"BUL HLE wurg

sECumTY

I N /\ \ Feampnin,
WCLASS (;J,U"
CLASMPICATION OF THIS PAGE /Whan Daia Entered) ('

T RIPSRY NUNBER 1. GOVT ACCESSION NO)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS

ot gl i

IEFORE COMPLETING FORM

-AD8G é¢/

T, RICIP S CATALOG NUMBELA

AS A
| pEST

AN INVESTIGATION CF QIUSI'ER,ANALYSIS M'NICUES

AN OF STRICIURING SPECIFICATIONS N THE
OF CCMPLEX SYSTEMS 3

POAT HUMBEN

2 —]
"+ N ANT NUM 4)
!
|
TwsRets TRRSESIN I TR
MASS. INST. OF TECHNOLOGY
11, CONTROLLING OF FICEK NAME AND ADOALSS : -
CCOE 031 Nz
NAVAL POSTGRADUATE SCHOOL orf—em -

[TT RoNITORING ACENCY NAME 6 A

[76. OisTRIBUTION STATEMENT (of thie Reperi)

MONTEREY, CALIFORNIA, 93940

] 4 "u“-nv [u-u ropert)

TTe, E! novcaﬁulﬁo-uonbma

APPROVED FOF. PUBLIC RELEASE; DISTRIBUTION UNLIATID

18. SUPPL

EMENTARY NOTES

19. XKEY WORLSE (Coniinue on r0vevee oside If necocoary and idontify by bleoak mamber)

CLUSTER ANALYSIS TECHNIQUES, STRUCTURING SPECIFICATIONS, DESIGN CF
QOMPLEX SYSTEMS

8]
®

20. ABSTAACYT (Continwe an rovevee vide Il necossary and (doniily by bloeh mamber)

SEE REVERSE.

X

DD on'ss 1473 wormon or 1 wov e8 18 onsoLETE

(Page 1)

SECUMTY CLASSIPICATION 07 THiIf Pa o Dole M_',*

Best
Available
Copy

AN INVESTICATION OF CLUSTER ANALYSI3 TECIHNIQUES
AS A MEANS OF STRUCTURING SPECIFICATIONS
IN THE DESIGN OF COMPLEX SYSTLMS

by
TIMOTHY A. HOLDEN

Submitted to the Department of Ocean Engineering on
May 12, 1978 in partial fulfillment of the
requirements for the Degree of Ocean Engineer

and to
the Sloan School of Management on
May 12, 1978 in partial fulfillment of the
requirements for the Degree of
Master of Science in Management

ABSTRACT

Complex design problems are characterized by a multitude of
competing requirements, The designer of such a system
frequently finds the scope of the problem beyond his concep~
tual abilities and attempts to solve this problem by
decomposing the design problem into smaller more manageable
subproblems. Since desiqgn requirements form the interface
between the users of a system and its designers, a
disciplined framework is required for the decomposition of
the design problem into subproblems which will best satisfy
the overall problem objective.

Cluster analysis is a heuristically based technique by which
attributes of a system are sorted into groups; such that,
the degree of '"natural” association is high among members of
the same group and low between members of different groups.

“The purpose of this thesis is to investigate the use of a
specific cluster analysis technique, developed by Dr. Raphael
Andreu. As a means of imposing a framework upon the
requirements for an existing computer operating system
forming the first step in the decomposition of the global
dasign problem into subproblems. It is envisioned that the
imposition of such a framework on design requirements will
provide new insights and understanding of the relationships
among requirements which may verify the design or suggest
improvements to the design of a sample operating system.

Stuart Madnick
Professor of Management
Thesis Supervisor

rd

80 7 14 076

Approved for public releaseq
distrlbution unlimited.

AN INVESTIGATION OF CLUSTER ANALYSIS TECHNIQUES
AS A MEANS OF STRUCTURING SPECIFICATIONS
IN. THE DESIGN:-OF COMPLEX SYSTEMS
by
TIMOTHY A. HOLDEN

ByS., U. 'S. Naval Acadenmy
(1972)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR. THE'
DEGREE OF
OCEAN ENGINEER
AND FOR THE DEGREE OF
‘MASTERfOE‘SCIENCﬁ“iN MANAGEMENT
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY'
June, 1978

©: Timothy A. Holden, 1978,
4] II /‘/"",
Slgnature of Author...."./ﬁl.’: ’f.i’. .ﬁ‘...[:‘:‘./‘ "/(.'9/...'..’........'.

/Department of Ocean Engineering
. -May 12, 1978

‘Certified by.p+¢7?:iii$ﬁh~ti.ﬁET:TjZ)TZQ4§(2L. ';vaffTT.....

Thesis Su rv;sor, S gan St ol of Man gement

certifled byoo‘ 'oo.oooo 3!000.
Thesis uper lsor, Departme t of Ocean Engineering

Accepted by...:....l...;t...o.....0.0....‘0.'000‘U...I..OO..‘.
-Chd lrman, Department Committee

Acceptéd by.....{f/i:;ééLca ng Dpaccessrtsssiessians ey

Chalrman, Departmental Graduate Committee

AN INVESTIGATION ‘OF CLUSTER ANALYSIS: TECHNIQUES
AS A MEANS OF STRUCTURING SPECIFICATIONS
IN THE DESIGN -OF COMPLEX SYSTEMS

- by
“PIMOTHY A. HOLDEN

Submitted to the Department of Ocean. Engineering on
‘May 12; 1978 in partial fulfillment of the
requirements for the Degree of Ocean Engineer
« and to

the Sloan School of Management on
May 12, 1978 in partial fulfillment of thn

requirements for the Degree of

Master of Sciernce :in ‘Management

A,BS'I“RACT‘

-Complex design problems are charactérized by a multitude of
competing requirements. The designer of such a system
frequently finds the scope of the problem beyond his concep-
tual abilities and attempts to solve this problem by
decomposzng the design problem into smaller more manageable
subproblems. Since design requirements form the interface
betwéen the users of a gystem and its designers, a
dxsciplined framework is required for the decomposition of
the design problém into subproblems which will best satisfy
the ‘overall problem objective.

Cluster anulysis is a heuristically based technique by which
~attr1butes of a system are sorted into .groups; such that,
the degree of "natural" association is high among members .of
the: same group and low between members of different groups.

The purpose of this thesis is to investigate the use of a
specific cluster analysis technique, developed by Dr. Raphael
Andreu. &z .a means of imposing a framework upon the
requixements for an existing computer operating system
forining the first step in the decomposition 6f the global
design problem into subproblems. It is envisioned that the
.1mpositian of such a framework on design requirements will
provide new insights and understanding of the relationships
among. requirements which may verify the deSign or suggest
improvements to the design of a sample operating system.

‘Stuart Madnick
Professor of Managément
Thesis Supervisor

e

ACKNOWLEDGEMENTS

The.-author wishes to: express his. appreczation to the
following“people for their help and’ guidance in the prepara-
tion and ¢ompletion of this, reseéarch: Professors Stuart
.Madnick of the A. P. Sloan School of Management, ‘thesis
supervisor- Chryssostomos Chryssostomidls, Department of
Ocean Engineering; thesis advisor; and Kevin J. 0'Toole,
Department of Ocean Engineering, academic advisor.

‘The followmng graduate stidents in the Sloan School of
‘Management: :also: provided: invaluable assistance. in the
critique of this research: Raphael Andreu, -8id Huff, and
Chat-Yu Lam.

The author also wishes to thank his true friends for their
assistance and understanding during the three years at MIT.

4~

TABLE':OF CONTENTS. ‘
o page
‘Chapter I: Description of the Problems Inherent in
’ Large Scale System Design 9
1.1 Problem Description 9.
1.2 'sysfeﬁ=béVQlopmgnﬁ\cY¢le 11
1.3 Summary 17
14 Thesis Outline 18
Chapter II+ 101gétér,Anaiysis:methédgiogy‘and the 20
‘ Decomposition Facility
2.1 The Cluster Analysis. Problem 20
2.2 ‘Soluticn of the Cluster Analysis Problem
by the Application of Graph Decomposition
[OR Techniques: 31
2.3 Decomposition Methodology ' 35
ChépteriiII: ‘Sample ‘Operating System 39
'3:1 General Characteristics of a Lardge Scale
Computer Operating System 39
3.2, Sample Operating System Description 41
3.3 Summary 50
Chapter IV: 'Requirements Definition - 51
4.1 Reéquirements Definition Methodology 52
4.2 Summary 61
.Chapter V: Interdependency Assessment Methodology 62
5.1 Interdepéndency Assessmént Methodolégy 62

5.2 Summary 65 -

C e A tm ST e et AAT s Tt S sl AL F Dot s o

Page 5 is missing, and cannot be
obtained or reconstructed,

Page 118 appears to b¢ missing,
but the text on the preceding
page seems to indicat:. pages
are only misnumberad.

E
|
i

. ;'(w’ngmw
rTT—— i ik T TR - b T
—rrr - < T — e Y e
- - A = — T e TR
B et v r « : -
- - i~ ¥,
o e

K '1 A . -G -

. (Table of Contentss.........Continued)

8.1 Design OQverviéw of the Sample
‘Operating System
8.2 Functional Comparison of theé Levels
and Layers of the ‘Sample Operating
System with the sﬁbﬁrobleﬁs'
‘Generated by tﬁevbecdmpgsiticn
Methodology
8.3 ‘Inconsisteéncies Identified in the
Comparison of the Sample Operating
System .:and the Decomposition
Methodolégy
8.4 Summary
Chapter IX: Concluding Statements Concerning the
Applicability of the Decomposition
Methodology to the Design Process and
Recommendations for Improvement
9.1 ‘Objective of the Methodology
9.2 ‘Redoimmendations for Improvement.
9.3 Summary
Bibliography
Appendix A: Formal Specification of Evaluation
Parameters
Appendix B: Algorithm for the Identification fo

Kernel Subsets

Izs,

130

138
143

145
145
147
152
153

157

160.

. 57, £ - ST ST R T A 3
Ay - g Vs ws e e T e L . >
R ” v
1
3
M
2 . b
. i
R -
- . - "
— .
W
, Y -
- :7 -

(Table .6f Contents.. b0 drie aus .Contlpued) N {Pég’e

Appefidix C: Prelininary Set of Requirements 163
Appendix Di Preliminary Interdependency
. Assessment Results. ' 169.
Appendix E: Results of the Interactive

Decomposition Package for the

First Iteration 199
APPENDIX F: Main Subproblems Resulting from the

Fitst Iteration of the Decomposition

Methodoldgy . 215

APPENDIX G: Final Requirements Definition 221
APPENDIX H: Final Interdependency Assessment

Results 258
APPENDIX I: Results of tHe Interactive

Decomposition Package for the

Second Iteration 23?
APPENDIX J: Main Subproblems Resulting from the

Second Iteration of the Decomposition

Analysis 306
APPENDIX K: Linkage - Interface Assessment 312

- 8 = N)
_LIST OF FIGURES.)
AN LS Page
L.l System Devélopment Cycle 12
3f. 1 Extended: :ﬁiachii;gr ‘Concept: 6f a Generalized
6pérgﬁingx829tem 43
3;2'~Héir;:éhic§1 Design Structuré: of a Generalized
Operating System 46
6.1 Problem Structure Implied by the First Iteration
of the Decomposition Methodology 72
7.1 Problem Structure Implied by the Second Itera= :
tion .of the Decomposition Methodology 99 ;
8.1 Heirarchical Design Strudturé of the Sample 5
Operating System 129
/

-CHAPTER I

DESCRIPTION OF THE PROBLEMS: INHERENT
IN LARGE. SCALE ‘SYSTEM DESIGN

‘1.1 Problem Description)

The design of complex systems is characterized by many
of the following problens as identified by Andreu and
\Madnickul’

. There is no established frameéwork in which the design.
decisions can be coordinated amonhg various design
groups. This: can lead to an optimization of sub-
problems, but sub-optimization of the aggregate design
problem,

. THe adaptiveness of the system to changes in opera-
tional requirements is made difficult and time
consuming since such changes often impact the entire
system.

. The incorporation of new technology into an existing
system is cumbersome and'eXpénéive since there is no
systematic mens of assessing the impact of new
technology on the system operation.

. System performance evaluation may reguire an -enormous

model to represent the entire .system.

i

zRaphanAndreu and Stuart Madnick, "4 Systematic Approach to
the Degign of Complex Systems: Abplication to DBMS Destign dnd
Evaluation', Center for Information Systems Research, Repvort

32, Sloan School of Management, MIT (Cambridge, M4, 1977) v.6.

Oy SR
st i ot . et s e A o € Sk 8 b ¥ = el ko i e e i e D e Al PSP

e

~ -

hild Sl (i R e AR did S el TR AT TR o A e hagtc R R |
. - . . R P

> 20 =
. ;. ‘The designer has no imeans to determine if the
problém has béen completely and consistently defined, ‘ i
or alternatively; ovet=constrained.
‘The most common tecliniqué currently in use to simplify the
design of a complex system is to. decompose theAglbbal problem
into smallex sub-problems. 'However,,without'prcpe:»guidancé, ,
+this Ieads to many of the ﬁollowing problems -as :documented |
by Mardel and CthsSoSﬁdmidis{z
. The subdivision of a given problem into lower level
jp:dbléms imposes limitations on .accuracy and is,
therefore; anwapprOXimat;on. This implies that the
-optimization of the subproblems does not necessarily

lead to total system optimization.

« A designer of'a specific sub=problem is likely to

have incomplete knowledge of the total problem.
. 'The decomposition proéess should be independent of
any specific technology or implementation technique.
The designer of a large scale system is faced with a number
3 of possible pitfalls as the size and complexity of the
b design problem increases. The problems can ‘be loosely
-defined as a lack of a consistent framework in which to make

3

design decisions. Fred Brooks” has defined this problem as

%p. Mandel and C. Chryssostomidis, "4 Design Methodology Fov
Shipe and Other Complex Systems"”, Phil. Trang. R. Soc., London

?Fred'Brooks, The Muthical Marn-Month: Essays on Softwareé

Engineering, (Reading, MA), p. 16-17.

ug‘«:\\ 74 m:‘gg‘yegg;ﬁg-n&,w ,{g—v ¥
.) AR "
“ CET I pA

S - |
onie of corceptual integrity and identified this as the most
important ¢énsidération in systéem design. Conceptual 'A
ip"c@":ﬁy in this context dictates rigorous design sequence, .
" for if there is no rigor in the design, the resulting
‘éfodugt,of&theedesi§n~p:c¢es§ is: highly idiosyncratig; in the
worst case, it is based on the failure history of the parti- :

ciéahts, As a final measure, rigorous design should survive
1gs,§mﬁgementgﬁién.gnd~groyide‘a,framéwork for intellectiial

:goﬁgrql(c§5changesatd.design requitements change.

Aleéfgszétémlbevelogmenﬁ Cycle
fﬁ order to develop a rigorous and consistent framework

for the design process, one must examine structure of the

‘design problem as ‘it exists in géneral in order to propose
improvemeptg‘to'thé §tfuqturé. AIthoughumgny procedures have
fbean'déﬁined“fér a typical computer software design prdblem,
Andreu £§v6§edﬂthe following: System Development Cycle‘gs
;p;égoééd:Bj Freeman to iilustrate*the nature of +he design
problem. .

Figure L is a.repreSentation of the five steps which
Freeman recognized in the désign cycleé. Each step consists
| of an input and output and an operation which take place

in eéach step. Tiie function of eéach step is now further
definéd from the pe:séective of the need to QStablish a
graméwdrk in which the global ‘design problem may be

) decomposed.

oy i . i 2
1) Neeosamaysts ~ ;f
\t n,,v«-i:‘ i O e ’) V ‘ o . :
i g Inpu¥: Primitive needs, System context; user problems.
: Operation: TIdentification of major functions:and constraints,
Qutput: Gefieral requirements.
| (2) FUNCTIONAL SPECIFICATION =
1 Inputi Requirements, system analysis of context,
‘Operationi Conversion.of needs into. explicit functions, selection
of -operationai constraints.
‘ Output: Specifications of system functions, constraints, and |
i . S. ¥
* i ——— objective e S ———etreses —%i—i--J'
(3) ARCHITECTURAL DESIGN
Input: Specifications, general context of desired systems,
knowledge of similar problems. 3
Operation: -Discovery of problem structure, identification of major 1
pieces of system, establishment of relationships.
between parts, abstraction.
Qutput: Structural description of system,
(4) .DETAILED DESIGN SPECIFICATION
Input: Architectural -déscription, programming environment'
details.
Operation: Abstraction, elaboration, choice of alternatives.
Output: Blueprints for prograns.
(5) IMPLEMENTATION
£ '
s Input: Blueprints.
%R Operation: Encoding -of algorithms and data representations,
;kz | testing, debugging.
; 9;7 Qutput:. Improved system. L
%‘ FIGURE 1.1: The System Development Cyc1e4
B (\M 4Raphael Andreu, "A Systematic Approach to the Design and’ Structuring |
o - of ComoZea: Software System', wvuolzshed Doctoral theszs, MJT Sloan
3 School of Managément, February, 1978.

e g . .o - T YT TR e TR

=12 =
- Y.2wk NEEDS ANALYSISw
Thig.stageof the désign process. incdrporates a careful
agsessment .of the meeds which the final system must fulfill.
‘Thig §tage is generally the mos. unstructured of &ll the :

stages; :Since a neyw system must be. .designed to: respond to
the user's percieved needs. The information derived froém
theustaéé ranges from the most nebulous of statements of
need, to statements: of such detail as to actually specify
implementation. The lack of structure in this phase of the
@gSign:prééessjisulikélyrto,intrqéuce~errgfs which will be
repreatéd throughout the remaining stadges ofuthe:désign
Pprocess.

In order to avoid the e;:9rs.iﬁtr6du¢ed by a poor needs
analysis phase and driven by a desire to apply the decom=-
’éqsition~methodology to an untested system design, an
existing well-documented computer .operating system was
selected for analysis.

1.2.2 FUNCTIONAL SPECIFICATION:

This.stage of the désign process is concernéd with the
development of documentation aids in order to generate
formal and accdurate statements of the -system requirements.
Typically, functional specifications. are c¢haracterized by
many of the following properties: completeness, consistency,
correctness, testability, non-ambiguity, design freedom,
and robustness to change. Obviously, the geheration of

functional specifications is not an easy task, ustally taking

= 14 =

Place as an iterative or refining process in which the
global system requirements are continually refihed until the
systeii is completely defined.

~ Numerous résearch efforts .are currently underway to.
formalize the process of functional specifications. One
particular method developed by TRW, Defense and Space Systems
Group is called: the: Software Requirements Engineering
Methodology (SREM),> It is .an automated system which
<aﬁﬁehpt5’tévenfqncéwthe'discipliné'of a framework in the
individual interpretation of the .problem by the design
‘engineer to reduce the: ambigquity of software requirements
and théreby lead to increased consistency in functional ;
‘specifications.

In addition, dthe:‘Wprobiem‘statement‘languages"

developed by ‘tiechroew andfotherss

have identified two
classes of requirements; specifically, "functional" require-
ments; what the system is to do and "performance" raquire-
ments, regarding ¢onstraints on measures of system behavior,
No attempts were made in this thesis to implement any
of theé problem statement langiages, as such. However, a
series of guidelines for requirements -definition were
-established to insure that the requirements had all the

characteristics of a "well-defined" set of requirements. The

SCa?ZvG. Davis and Chaples R. Viek, "The Softwiré Development.
System"”, IEEE TRANSACTIONS ON SOFTMARE’ EI‘IGINE’E'RING vol. SE-3,
No. 7 (Jan 1977), p.70.

SZoan School, MIT, "System Documentation Languigé Réport”,.
unpublighed Sloan Schooz report, MIT, Sloan School (Cambpi dge,
M4), p.2.

= 15 =

classification of functional versus. performance requireménts:

developed in. the problem statement languages, were used in.

the interdependency assessment process..
1:2.3 ARCHITECTURAL DESIGN:
‘This stage of the design process is concerned With the

discovery of problem: structure in tle desigh as defined by

Freeman: That is, the ideéntification of major sub-problems

of the System and the establishment of relationships between
these sub=-problems. Utilizing this téechnique, Andreéu has
rioted the existénce of both a problem structure and a system
structure inherent in each 'system design.

The problem structure is concerned with how different

parts of the systém interact from a design standpoint; that

is, what parts of the system can bé designed independently
of others as opposed to what parts must be designed at the
same time. ‘The problem structurs theén is used to identify
the trade=-offs that must be taken into account between
completing solutions of the design problem. The concept of
a problem structu’e was a key element used in the inter-
dépendency éssessméht phase.

The system structure, on the other hand; is concerned

with how systeém parts interact once the system is designed

and in operation: Andreu has pointed out that the two

structures do not necessarily coincide:
"Traditionally the 'design problem structure'

has been determined by the system structure in

CreRgs DI G

“ 16 =
that it is very common to drganize the désign
.of a new system -around *standard" system
structyres, drawn from similar systems pre-
viously designed.: W7 : -
As previcusly statéd, a subdivision of a givén problem into
lower levél probléms impbseg"liﬁitatiéhsaonnag¢u:acy and is,
therefore, an approximation. Secondly, unless the process
is rigorous, it is hzghly idiosyneratic. ‘The:gballof any
proposed framework must be tc. reduce the designer 's -depend-
ency on "standard" system. structures in such a way as to

‘;iéo:dusiy decompose the design p:oblemtinto\we;lsdgfiﬁéd‘

subproblems.
‘Therefore, a framework is' Fequired at this stage of the
design process, toresolve the trade~offs that may exist
among system requirements as implied by available alternative
impleméntation: techniques. Andréau has proposed a framework
which addresses this issue based ¢n cluster analysis tech-
niques. The purpose of the framework is to: !
. explicitly establish the nature of the problem by
decomposition;
. establish a consistent framework in which trade-offs
can. be assessed.
The me?hoddlogy constitutes a well-structured series of
activities that the softwérélepgineer~should perform during
the design process. The value of such a methodology, claims

Andreu,

1 Andreu, ;.\{1 .

— I L R R SR A B Kokt satlurd T vz ol TGt = AR
R A NIt e i E i
-y BRI - - e . EEETI

- 17 -

":..is that the concept of interrelated design
subprobléms: stemming from the explicit inter-
dependencies among reguireménts, constitutes a
better basis for the subsequent detailed design
stagés than thé ofiginal disjointed set of
requirémgﬁté.“8~“ .
1.2.4 DETAILED DESIGN SPECIFICATION:

This stage canstitutes.the,actual design of program
modules as opposed to system design. ‘The»work‘of(Parhasgt
“has focused on the means of structuring the software modules
in order to implement the system. This stage is- beyond the
concern of this thesis.

1.2.5 IMPLEMENTATION:

mhis(stage is conqerged~Wi§h,the actpai programming of
the system. Efforts. by Liskovlc have attempted to develop
structural programming tools to systematize the activities
at this stage of the design. This stage is also beyorid the

concern of this thesis.

1.3 Summary

The system development cycle is characterized by

Andreu, p.4I.

9Dav¢d-E, Parnas, "On the Criteria to be Used in Decomposing
System into Modules", Communications of thé ACM., Vol. 15,
Jumber 1.2 (Dee, 1972), pp. 1053-1058.

zoBarbara Liskov and Valdis -Berzins, "dn Appraisal of Program
Spectfications™, Computation Structures Group Memo 141-1, MIT;
Laboratoru for Computer Setence (4pril 19777, p.1-12,

B L T SR T L

Slle TSI dos ONET £ T

n W"‘”ﬁ’"‘
’ I N EAY e TR ~

5 e TR i F

e T : o e LTS
P T B R Al T RLIL 4 s e e T

i i T AR NS IR

R BT L T R R T

- 18 - ‘ ’ * -

incteasing dttempts to Structure or systematize each.gtagé
'1¢£'th§»de81§n~§foces$@ The purpose. of this thesis is: to
apply the technlques developed by andreu iJlorder ‘to. verlfy
.the de51gn of the ‘computer operatlngrsystem under investi-
‘gation by the application of ‘the methodology as :proposed by
Andreu, |

1.4 Thesis Outline
The computer bperating'SYStem'ehtitle&y "Theé ‘Sample:

Operating System (SOéo"wwas developed by Professor Madnick

»and&P:qfeseeﬁrDonovanll of the MIT Sloan School of Mahage-

- ment. 'This system design problem was seélected for examina=
tion since it is a reasonably non-trivial and well~ddcumented
software design ‘problem.

Chapter II is devoted to a discussion of cluster
analysis techniques in general, and a description of the
specific methodology proposed by Andreu:

Chapter III preSents a description of the general
characteristics of the sample -operating system.

Chapter IV presents both the procedure and the results
of the requirements definition phase for the sample operating
8ystém. . This chapter presents in detail the guidelines which.
were used to generate the requirements and, by example,
demonstrate some of the pitfalls encountered in requirements

definition.

z‘zStuaz'i: E, Madnzck and John J. Donovan, COverating Systems,
(Hew York, 1974), pp.381-431. ' '

’l,»i'@g, BRI

WL, - Lt A e) wy o CIRIRLY, ,?,: “y ot A ogg\%:n;";“m ISt
» - ~ < 2 St " T
4 “n -

Chapter V. presents: the methodology for theé iétefdéi?enéé
‘ency #ssesstent phase and' the resulting input for analysis
utilizing Andreu's -hethodology.

Chapter VI p:eg;ntg the results of ithe first decomposi-
tion uging the analytic techniques previdusly described:
These results are..considered an intermediate 'step; therefore,
_the results are analyzed as motivation to continue along in
the next Set decomposition..

Chaptér VII presents the results of the second decom-
position analysis and compares ihe\ﬁesultsvwith those
preViOusly‘obtained;

Chapter VIII presents a comparison of.théfdesign frame-
wo:krimpliga‘by the decomposition methodology vis-a-vis the
actual design of the sémpie:opératipq~system.

The final chapter will present suggestions for changes
or improvements to the cluster analysis techniques proposed

by Andreu, based on the experience of the user.

B e S e

—— > oo " (s Bt e ™
o el —CR—.—e R TR T
P g
- O
: .
N
B)
N ~NAL ¢
- 20 =

CHAPTER. II
CLUSTER ANALYSIS METHODOLOGY .AND
THE DECOMPOSITION FACILITY

‘This chapter is devided iiito three Sections in order to:

s

Present the cluster analysis methodology as applied: to the
general décomposition problem. g
First, the need for such a methodology is motivated by

gétablishiﬁg thg‘objegtive~9f such cluster analysis tech-

;gggues‘gndvﬁhe:tyEés oftp:ébléms~ehccuntered“#nwthg*apprica~

tion. of the methodology. Deiiniticns of general terms are

. offered for use through the rest of the discussion.

Second, a solution to the decomposition problem using

cluster analysis techniques is defined. Specificaily, the.

ﬁgcomposition problem is defined and the: techniques for

partitioning the requirements set are presented according to

the work by @Andreu:
Finally, the use of the decomposition software analysis

techniques developed by Andreu are ‘presented.

2.1 Cluster Analysis ProBlem

Cluster analysis techniques :may be defined as analysis
techniques to sort the attributes of objects into gr;ups
such: that the degree of natural association is high among
members of the same group and low between meéembers of dif-

ferent groups. When successfully applied, the techniques

ot el L

DT

Y

/‘“k
{

[— T
e PR TITTO o Pk
“ . N
e
SRR ST X ~ R
$

- :can: be uséd té reveal problem. structure as rélationships

that iexistfor a -givén set of data.

In order to. apply these techniques, oneé must bé capable

‘of ‘the; followings

. Definition of & group of objects to be clusteréd; in

this case, design requireiments for a-computer

operating system.

;
;

;

3

g
-
W
it
3

; Selection and common definition of .attributes. common

to all :objedts in this group; in this case, the
8inqular attribute selected was the -existence of an
interrelationship between a given pair of requirements.

The definition of interrelationship will be discussed

3

in. Chapter V.

. Definition of an evaluation parameter s$o0 that theé

degree of natural association among members of

clusters may be measured.

. Definition of an algorithm to f£ind the best partition

of a group Of objects. Spedifically, an algorithm

which defines a partition with the "best" measure

-evaluation parameter without having to. évaluate all

the possible partitions.
The following definitions have been applied to the
cluster analysis problem.
In general, a group of objects 0, may be defined as

follows:

Let 0 : {Ol”"oif"oN} be thé set of dbjécts in

ettt e
R — e s paitauads T i o0
e v L . s e N 2
T T i 5 g s
TR — e - ; o~ o
v syl : .

:

which. the clusters are to bé identified. These

are composed of individual design reguirements.

and: -also fz-‘ep'ré“ééntﬂ the nodes of any graphs which

are drawn; |N| may be defified as the cardinality

of a sat 'of objects; that is, the number of

objetts within a given set.
Each object mayfﬁgugha:acteriZéd*E? a sat of attributes:
. X 4‘@lea,xjp.exﬁ}»megsu:EQJin some -consistent scale.

Ini the ¢ase of the discussion; the attributa is the

existence of interdeperndencies.
Therefore, introdiucing a slight changé of notation, an object
Oi‘a 0 i8 characterized by a vector.

J Aztfldij,‘aij‘= 1 if nodes 0, ar;d»oj are related; an
intérdependency.exigts; = O dtherwise. This is the so-called
adjacency matrix ifi which it is- assunied that aij = 1 when
i= 3,

The adjacency matrix is constructed by making a pair-
wise assessmeént of the relationships among all pairs of
requirements. The adjacency matrix is simply an NXN mat#ix,
- where N is the number of requiremerits objects: Once a set
" .of objects and thei? interrelationships have been established
the next prdbiem is defining evaluation parameters to measure
thé-&ggree of natural association.

2.1.2 EVALUATING SET DECOMPOSITIONS:

Any method for evaluating the success of a decomposition

scheme must consider the strength of intra-subset ralation-

DL e Tyl

s St et

i

ships, and some means for combining these two parameters.

- Therefore, the following evaluation parameters were definéd

by Andreu,t¥ |
Strendth: A reasure of how tightly coupled the modes

in -a given subgraph are is defined as followss

[Nunber of links. joining nodes) :
[\ dnthe same subser [0V
A TN menz
:whene a subgraph is a gzaph,dompgséé of a .subset of ;hg
original members. of the total graph of noéés,td be ‘decomposed..
Strength is evaluated by measuring the number of links
joining nodes in the same :subset minus N=1, N béing the
cardinality of the given subset, normalized by a factor of
N(N<1)/2. In a subset of N nodes, N-1 is the minimum number
of interdependencies which cén form as subgraphs. without
disjointed components; thus, thé mumbet of links in excess |

of N-1 is a measure of subset internal coherence, beyénd the
minimum raquired for it to. be coherent at all. The factor
N(N-1)/2 is the maximum number of links that may exist in a

subset of cardinality N; normalizing by the factor permits

Qbmpérable,measures for subsets of different cardinality.
Coupling: & measure of the extent to which two sub=
sets are independent, and is defined as follows:
Number of links actually joining

. nodes of two different subsets |
c - - o B - - I

N'M

Z‘ZAndz'eu, p.100.

- 24 .y
" 1In order to evaludte the coupling parameter, the number of
intérdependencies established between two nodes: in differént:. "
'subsets are sounted and normalizéd by the factor N'M; where
N dnd M are the cardinalities of thé two subsets.
*@éé%ﬁfe@ The findl evaluation parameter of ¢lustering
suécess for a given partition may bé defined as follows:
P P
M=Ts ¢ I Cij
i=l — i=l
J=isl
‘The-measure parameter représents the -summation of all the
stréngths of all subsets in the given partition minus the
-couplings dssociated with all possible pairs of subsets:

P is definéd as a partition or subgraph of the original
requirements: set. Appendix A contains a formal definition
‘df each of the evaluation parameters listed above.

The parameters are defined so that the measure value
should be large to indicate a.good evaluation of the natural
association of a partition. .generated by ¢luster analysis
techniques. Therefore, given a group of partitions one
would select the partition with the highest value of measure
as réprésenting the "best" partition.

‘Given a requirements set, attributes in the form.of
interdependencies and evaluation parameters as previously
defined; one is now faced with the problem of determining an
algorithm which will denerate the best partition for a

requirements set of non-trivial size.

 2.1.3 CLUSTERING SCHEMES':
(Given an adjacenéy matrik and evaluation parameter as
previously defined, a techiique is now néeded to:deal with a

nén-trivial decomposition problei which would not require

that exist for a given requirements set. A heu;istigally

fbasédﬁproceﬁu:e'WQS:selecged”bg Andréd,la;since he has

de@bnstratedfthat.neither‘an optimization nor a graph

gga theoratic approach is feasible to solve a problem of non-

? trivial size. Therefore, the various families of cluster

‘f" analysis techniques and heuristic graph decomposition. tech=

3' | niques wers investigated to determihe which were thejmbst

el ' feasible.

giiw) In general, thére are two gengriértypes»of*cluster

‘?5 analysis methods, the heirarchical method and the partition=-

'g: ing method. The following discussion will .focus upon the

- gsimilarities and differences of the two methods, concluding
witl the rationale for the method selected for use by
Andreu.

, However; prior to a discussion of actual cluster analy-

%l’ S§s methods, the following définition of the concept of a
distance matrix must be presented to transition from the
adjacency mggrix of intérde@éndence established between
design réquirements to a similarity matrix;@efined cluster
analysis techniques: The binary assessment procedure, used

; ~ for identifying rgquirémenp with depen@ences is simplistic

(‘“ ﬁAndreu, pp.103-109.

 having to investigate of compute all feasible decompositions

R VR
= o
- ! n - N ~ TS Yy

wrog i ST

‘ 4 AN &
. P A

i)) AR
- 26 = i
3

but it is Aot useful fot defining distancés ds established
. for Euclidan geometry. For the putposes of cluster analysis
techniques; specificdlly, computing similarity matrix S,

scale conversions may be needed prior to thé representation

of a pair of objects Xy and ij into -an:-entry of thé form
sij, = 4 (Xg 1 %y) in the similarity matrix. The scdle conver-

sions must meet ‘the properties of "metrics" which is: one type

.of distance. function, §
‘The formal properties of metrics have been identified ‘
by Anderberg as follows:
"Let S be a symbolic representation for a measurement
space and let %, ¥, and z be any thrée points in S. :
Then a distance function D is a metric¢ if and only if f;

it satisfies the following conditions: E
L. D(x,y) = 0 if and only if x=y

2. D(x,y) 20 for all x and ¥y in S

3. D(x,y}) = D(y,x) for all x and y in S

14
4. D(xiy) < D(xiz)#D(y,2) £or all x, y, and z in §

The first property implies that x is zero distance from
itself and that any two points zero distance apart must be
identical. ‘The second property prohibits negative distances.
The third property implies symmetry by requiring thé distance
from x to y to be the same as the distance from y to x. The

fourth property, the triangle inequality, requires that the

length of one side of the triangle be no longer thén the Sum
(‘g of the lengths of the other two sides. The satisfaction of
-.w-/ v e . P - I N

14Miqhae2 R. Anﬁerbérg; Cluster Analysis for Apvlications,
(Yew Yok, 1973), p.99. ‘

—_ e X i) et
IR T VTRV R ~ B RES M K T TS
2 B i - IAREAN v:,:,;_wr:,a,,,«} B
- e 2 o3 ; . “”5,»"'
:

- 27 - o _
these properties is requitred so that the concept.of distande . - 1
ig the Euclidean distance of elementary gedémetry. Once the

property is established the well-known properties. of B

Buclidean distance geometfy can be applied tb sifiilarity j
matgices. | ?
A distance function which Satisfies the first three :

conditions of & metric, but not the triangle inequality is
known' as a semimetric. fufthe:motgr:a*métgiqwaiéh-
additionally satisfies the following property

D (x,y) *MAX{D(x,2) ,D{y,2)} for all X, y, z in §
is called an ultrametric: Since the latter property is con-
siderably stronger than the triangle inequality.

‘And:eu;s

has pointed out that the concept. of cluster
analysis is not a precise téchnique sincé it is heuristicailly
based. Furthermore, Blashfield and Aldenderfer have shown
that the various cluster analysis methcds do, in fact,
generate ‘different solutions: 4o the same data: Therefore,

the value of the methodology is strictly dependent upon:

1) Thé numker of subsets into which the original set

is decomposed; where the maximum = N and the
L minimum = I. 0
‘ 2) The axtent to which the clusters are individiially

coherent and collectively are distinctly different.

?SAndreu, szis.
163096? X. Blgshfield and Mark S. Aldenderfer, "4 Consumer

Report on Cluster Analysis Software!, Penmnsylvania State
University Report (P4, 1973), p.3.

il R S
'q
.. -
oo

- - - 28 = _ e -
The tvo. approaches to. cluster anlysis technigues,
‘diséussed it £he following section, differ in the méans by
wthh they approach a iiddle~ground solution. to either :
 2:1.3:1 Agylomerative Technigues: ?
‘ The: first basic meth¢d“gf cluster analysis is called:
éﬁéwgggidmefativé'méthod; The measure of similarity used
is fiiclidearn distance. The methodology begins with N
cliusters, -each object in O is: a simple member cluster. 'The “
method proceeds as the NxN distance matrix is searched for
the ‘two most -similar entries, which are then combined to i
form a cluster. The method continues until all objects J
belong. to one single cluster. This method yields a rasult z
which exhibits a strictly heirarchical pattern of relation- ?
.ships, in which the number of levels or ranks equals the
number of steps in clustering.
The foxrm of linkage; i.e., thé criteria used to join
objects togethér to form clusters, may vary from a single
linkageé cluster, in which: an object is joined to a cluster if
it has & certain level of similarity with at least one mémber
.of the ¢luster, to the coémpleteé linkage method, which
requires that an-objéct must .achievée a specified level of
similarity with all mémbers of & given cluster before being
joined: to it.
2:1:3.2 Partitidning Method:
j‘ The seéond méEthQOf'c;uSter,anaxysis is called the

- 29‘- A

partitioning méthod: The partitioning méthed differs frof
the agglomerativermethod in that the solufion does: not
*pé;r{t:ay a Heirarchical relationship among the éntities. The
resulting clustérs obtained from & partitioning sélution are.
discréte and exist at a §ingle rank.

The method proceeds as £ollows: the user selects a
'statistic to be optimized during the cluster analysis; in
this case, measure (M).. All objects are initially assigned
to a 'single cluster of N objects. The user must choose the
" numbef of clusters (K) which are believed to -exist. in the
data: ‘The methodology must then. use some scheme to determine
K leader/seeéd objects. These seed objects represent. a
Kernel of objécts about which the remaining :objects are
clustered. An object isktpén‘assignedlto a cluster with the
‘hearest centroid. The method then recalculates the centroid
‘of the cluster, :and the process is then repeated until there
are no membership changes which will imprcove the overall
solution. ‘This method is iterative in the $olution téch=
nique, as an object may actually change its membership from
one cluster to another during the process. The .agglomerative
method, on the other hand, requires only one pass through
the data for a complete solution, The partitioning method is
more timeéconsumiég, but allows ‘a certain robustness to the
solution ance~ea§h cluster is re-examined and mémbers may be

rewassighed. However, the method requires the specificatioén

......

e o e - =T e s AT T T
s < g T

T AT T AT T

¢

user fust specify K, final mefiber of clustering before

proceeding with the partitioning.

Ancther' distinétion among partitioning methods is
reldted to the cakcgi%ﬁidﬁAéﬁ the ‘centroid for eack cluster.
As pointed out by Blashfield and Aldenderfer,

#ihe combinatorial methods réquire the recalculation

of thé centroid of a cluster after éach change on

membership. Non-combinatorial methods calculate

centroids only after the complete pass has been made.

Therefore, combinatorial method of control calculation

is considered to be more conservative."!’

‘The partitioning method then avoids the major weakness of

the»agg;qmerqtive method, 8ince the iterative nature of the.

partitioning method allows:early decisions regarding which

object is merged into which cluster to be re-examined as the

algorithm proceeds. For this reason, the partitioning
cluster analysis method was selected for use by Andreau.

In order to implement the partitioning method of cluster

analysis, one is faced with the following problems:

1) Conversion of the binary adjacency matrix into a
similarity matrix which satiéfies the requisite
métric properties.

2). Ientification of the X pardmeters which is the
humber- of seed nodes.

3) TIdentification of the actual nodes which are the

seed nodes.

1781asnfietd, p. 9.

N
¥

o Gmeag s TIRET

ot i A i . |
XTI SN S e -
EA ST - o R e T
N ~ 2 v >

- 3L=
Andréau investigated the use of heuristic¢ graph decoms
pogition techniques, particularly the concept. of & "core

set" to- solve the preceéeding problefis. The techniques; are

~ -described in the followWing séction.

2.2 ~301ution¢ofithe'Clustgr'Analysis,Prob;emﬂbzfthewsrapn
;Dépompositiohxtebhnidues

?hgwgurposevof this section is to present the tech=
niques proposéd by Andreau for the solution of cluster analy-
Srs~p:bb1ems;‘spgqifﬁda;iy'thé‘¢onVersibn of the adjacency
matrix and identification. of partitions through: the iise of
heuristic graph deqombqsiticnvtéchﬁ@ngs.

In order to solve the cluster analysis problems pre=
‘viously defined, Andreau investigated the use of heuristic
graph decomposition techniques. The definitions of require-
‘ments, interdependencies, and the adjacency matrix still
apply to the problem at hand. The following defihitions
apply to dgraph decomposition téchnigues:

Core set: CS, associated with a node ¢y in the set

Csi e{ojloj‘s.r. aij = 1} M
that is the set of all nodes related to
Q4+ including itself.

Connectivity of node 0,:

c, = ICSiI - 1, where lcsil is defined as the

cardinality of set X >

Conceptually, one is searching the adjacericy matrix for

=32 =

:objécts with a high connectivity whose core 'sets do not

interfére with each othér. Once identified, these objects

form the Kernel of subsets of objécts whose ‘éléments are.

strongly related. As deté:minédfby‘Andfé@l@\ohée the number
Of Kernel 'subsets has been identified, the remaining nodes
can be assigned to. the subsets in which they best fit; where
the measure of best fit is as previously defined by the over=
all measure (M). 'The actual procedure used. to identify the
subsets: is. presented in Appendix B.

The procedure reqﬁires the "a priori" specification of
the parameter (K) which is related to the number of sub-
graphs expected to result from the decomposition. Andreu's
experiences indicateéd ‘that obviously 1 < K < N whére N
equals the number of nodes or objects subject to decomposi-=
tion. Andreu stated more strongly that K should be set at
a value somewhat higher than the expected number of sub-
graphs, yet the lower the value of K, the more cohservative
is the result since fewer subgraphs will be :identified
considering the interferences among many core sets. In order
t6 normalize the selection process and to make the facility
more robhust, the selection process for K was redéfined as
followsy

K = percentage of the maximum value of connectivity,

<y for the entire graph.
Note that the value of X has been redefined as a percentage

value of Ci; this implies that K should be initially

lgAndreu, p.126.

. . - - . M ‘ .
j o
BT D N T S L W m K VO]
e R S A, R Sk s ﬁ:“:m'*i’}?‘? R
RO £ T 2 TR T Rl A A
Y I LTl S AR \
[N ; =y

s 33 = : IR "‘:fﬁ
§élected as 4 high value (80%) in order to yield & conserva=
(Eivé result..

Andreu then investigated thé pogsibility of generali=

TS VPSR VRSN PRIPES o8

* zing. the. définition of thé core set as follows:

€8 : 104,0, such that the minimum path / f‘

0; » 04 < ® i wheze P<l ?

Note that inrthg‘gaSExﬁhgre<E~# Ly tﬁ$5<is,éQuiValent £o the: é
previous definition of the core set. The definition of Pl '
ig required in order to spe¢ify a minimum path. A more
complete explanation is offered by Andreuilg'b:iéfly the '
point is that the minimum path among objects,oi,.oﬁ, OK is
as follows:

'When'minimum.path (Oi +‘Oj) 2 Minimum Path (Oj + Og)

then either

1) 03,'6K are both adjacent to 0,
or 2) 0 is adjacent to neither Oj‘nbraok

This is true only in the c¢ase where P=l; therefore, Andred |

uses' P=l when computing the core sets as previously defined. ‘
A starting point for partitioning cluster analysis has
thus been identified, by the calculation and identification

of core sets as follows:

1) .select K = percentage value o6f maximum value of

-of connectivity:

2) select the node with:‘the maximum value. of

connectivity ci;

?;“ QMJ IgAndreu, 9-136i

= 34 =
3) select thé core seét, consisting of all objects
03 for which,Cy 2 K (CyMAX).
‘The £inal problem involved in generating a partitioning

methodoldgy was to develdp a method to convert the: binary

adjdcency matrix into a-similariﬁy,mat;ix.meetingrthe metric

¢onditions of Euclidean distarnice; since the single binary
coefficients dervied difectly from entries in the adjacency
matrix fail to meet theSg'prbpertieSe' Andreu incorporated
the "core 'set" concept previously introduced in order to

define. entries in the similarity matrix as follows:

[esy sy

‘whére\sij = Similarity matrix distance measure between

objects Oi and oj

QSi = Core set for noe 0,

For the special case, for .some pair of nodes. 0, and 0, such
that s‘ikéo» that is (Cs;=Cs, }, then it is true that Sij‘sck‘
for all j. The nodes Oi and 'O are equivalent with respect
to the rest of the graph as described by the matrix S. For
cluster analysis purposes, this special case represents the
case for which nodes i and k are équivalent. The pair is
collapsed to form a single node.
This section has determined that there are .géveral

problems which must bée solved in order to apply c¢luster

L o0

A re N D oiirhids
i h ﬂ: w bl ’ ’:-;:v
- o 5
- L
l
%
- 35 -

‘ahdlysis techniques to sét decomposition problems. Andrey
Ha$ used heuristié graph decomposition techniques in order
to:
. Identify the K parameter which represents the maximum
value of such nodes for a given graph.
;,Convertf;hgradjacency:mgtrix defined-bY"afpinary
agséssment of interrelationships into a similarity
matrix meeting the metric properties of Euclidean
geometry.
The final section of this chapter will presént a 'stepwise,
discussion of the application of these'techniques to the

decomposition problem.

2.3 Decomposition Methodology

The decomposition pfdblem was analyzed utilizing a Soft-~
ware package by Andreu. The package is written in Fortran
and runs on the PRIME computér system of the Sloan School of
‘Mahagement.

The features -available with this system are as follows:

1) Enter the adjacency matrix developed from the
requirements ihterdépéndency assessment. This
functién is performed using the "ENGR" command.

2) Compute a distancé matrix for the graph under analy-
sis using the "DIMN" command. Thé package actually
computes the distance matrix P=l is assumed by the
package, also it treats collapseéd nodes not as

single nodes.

S - e Tia
B O I L L

rr R
T 3 i - e e
. " ——er: g paasir oS S L e - A g
o o R LA N st e e s L PR ST kb ST o

o e 2 - s
<

. 36 -
3)" Compute the $imilarity matrix from the distance
matrix using the: "SIMA™ command.

4) Generate an initial partitisi. using the "INPA™ :

¢orimand: to identify the "core Of subgraphs" likely §
toexhibit high strength. The user must specify :
value for the K parameter. ;

5) Use the clustering algorithms to generate .clusters: T
and return a value for measure, strength, and :

‘coupling. : kB

E There are three clustering methods availablé for use: é

Heirarchical Clustering Méethod 1 -’which~me:ge§ the
"elosest" pair of clusters measuring the: distance
53 ' between tivo clustérs A and B by the mean of the:
'<;} ‘distance between the nodes of A and the :nodes of B:
That. is, |
a(a,B) = Lo = (@b .

g Ny :
; where N, and NB represent: the cardinality of A and B i
} respectively, the summation is over all the elements é
a<c Aandb ¢ B.
?) Héirarchical Clustering Méthod 2 -~ which merges the :

pairs of clusters which lead to a minimum mean of the

3 distanceé between all pairs of nodes in the cluster
k.4

L

A T R Ch

resulting from the merge. That is,

- 1
minimize X = —éig Ly (a,a™)
Nx '

()
—
/i
I
v
1§ . .

=37 =

whére N, = the cardinaiity of the set méfger A ,;
a,at ¢ A, ;
the summatién is over all pairs of hodes.
Heéirarchical Clqsﬁeringvméthdﬁ 3. - which merges the
two clusters A and B that lead to a minimization. of

the par;ﬁéter~y;

"ﬁxﬂgzris(ayal)-NA Zaxé,al)*Né stb,bl) j

where the first summation is overall pairs of nodes
in A and B, the second overall pairs in A, and the
third overall pairs in B. This method evaluatées each
clustering step as a function of the: partition para-
metérs before and after the clustering and, therefore,
‘tends to produce the best partitions; i.e., those
with the highest measure.
Additional facilities exist in theé software package to
perform a number -0f additions and deletions from the graphs |
and to. print out the results. :
The analysis package was designed to recognize a single
decomposition problem at a time. ‘Theréefore, the package
always deals with a currént graph; that is, the fundamental
working entity that the package is currently working on. In
addition, Steps 1 through 4 must be accomplished prior to
invoking Step 5: Any éhangé in the order will generate a

system error.

The usé of the decomposition methodslogy is presented

dn Appendices E dnd # £of the first and sedond iteration of

 the riethodology.

5 bt e

ok

Y

- 39 -

‘CHAPTER' ITII -
‘SAMPLE. ‘OPERATING SYSTEM

‘The Sample Operating System; ‘devéloped by Professor
Stuart E, Madnick. and John J. anovgnzb.as a pedagogical
‘tool to illustrate the basic functions of a computexr opera-
ting system, was ‘selected as the design problem for analysis.
‘The selection of -an existing, well-documented system was
dictated by a desire to insulate the decomposition analysis
from any problems associated with poor needs analysis.

The Sample Operating Systeém is composed &f all the
functions normally associated with a computer operating
system; however, due to its strictly peédagogical nature, it
has some unique features as well. It was conceptually
convenient to break the system down with its functiohnal
areas for descriptive and requirements definition putposes.
The following discussion will highlight the general fiunctions

of the Sample Operating System.

3.1 General Characteristics of a lLarge Scale Computer
Operating System

In most general terms any -operating system is a group
of programs within a computer system which manage the
hardware/software resources of the computer, and thereby
serve as the interface between the user's programs and the

resources of the computer.

20yadnick and Dorz’eﬁvam p.331.

P N

Madniék dnd Dondvan havée defined. the following entities

within a computer system:

user: .one who desires to utilize the computer resources..
job: any collection-of aétivities neéded to ccmplete.
the work desired by the user. A job may be

further subdivided into steps, tasks, or

_processes.

job step: units of work which must be dohe :sequentially;
namely, compile, load; and execute.
task: a program or job subdivision which is: the basic
unit orf work for the operating system:
process; a complete sequence of instructions that are

functionally/computationally independent of

other processes.

The normal resource management functions of the operating

system may be generalized into the following four ‘functions:

. Keep track of a resource;

. Enforce a policy that determines which user gets a
given reésoiurce, especially to resolve -conflicts

arising froém competition for thé same resource.

. Allocate a resource.

« Reclaim a resource.

‘The functional resourcés of any large-scale computer system

. - may be described as follows:

. Memory Management Functions

. P¥ocessor Managemént Functions

-l
~

T
—
/ 3
e

w ‘{-{Weﬂ‘ﬂww IR

'The deflnlylons, management funet;ons, and resources pre-

~ DéVicé Managément Fulictions -

N ihféfﬁaﬁiﬁn-Mahaéeméﬁtufunéffbns

v1ously deflned will be adopted in ofder to fully desc¢rihé

the characteristics of the $ample Operating Systeis

3,2 sample Operating Systém Description

' The ‘Sample Operating System, as: described by Madnitck
and Donovan, i§ conceptually designed around a précess;
recognizing that a process i$ the smallest computational
entity and, therefore,. h@s,cerggin‘requi;émentsvng¢e§sgry;fgt
its support. Thus, the Sample Operating System implements.

a basic system nucleus required for a complete system; fet
it does not includé other capabilities. such as language
processors or utility programs.

3.2:1 EXTENDED MACHINE. CONCEET:

At the most basic level, a computer processes -only
specific hardware instructions; such as ADD and LOAD. In the
Sample Operating System it was necessary to provide the
basic functions for procéss support as additional hardware -
liké instructions at a levél above the basic machine instruc-
tions. These instructions are called extended instructions
and are implemented by means of the Supervisor Call
Instruction. These instructions are conceptually similar to
subroutiné calls which énable the uSer to perform certain
resource managemeﬁt.functicgé at a higher level than the bare

machine, For example, SVC 'H' is used to halt a job and

T@:ﬂw AT T
1 S o ' AR
k3
1

1 b
P

e

. sermman Fsree
Al e T S

PRty
et

I N

v L et

RS -«?%2,‘
e el

e ORI SR A SO

s

g oo

¥ et S

o~
5

;slgnal the supervmsor process. Each~e2teﬁaedﬂﬁa¢hine

Lnsuructlon calls a ‘handler routine and may be»user callable.

Thexbasic’hardwareuanstructionswQfathe~machxne<comb1ned

leth the operating system proviided "supervzsor lnstructlons

~

,comprlse the instruction set of the extended machlne. The
Xgernel’gf~¢hisAogerating;sxs;em:runs.onuthevbarenmagh;ney

the user's programs run on the extended machine. Figure 3.1

represeénts thé=éxtén@edAmAchine*¢on¢épts
3.2,2 HEIRARCHICAL MACHINE STRUCTURE:
5Sihde’the’Sample’Obefating-System was intended to be

 ¢alled heirarchical ogeratlng system structure was selected

as the basis for system design. Basically, the methodology

allows the segregation of major functions of the operating

system into a heirarchy of capabilities. Its major advant-

‘ages include:

. It is a powerful means of proving the cortrectness
and maintaining the operational integrity of the
operating system.

. Lower layers of the system provide services to higher
layers. only 'via wéll-defiaed interfaces.

. The modular structuré endbles the éasy identification
of the major functions 6f the opérating system.

In ordér to implement the heirarchical concept in con=

junétiep with the extended machine concept, it was nécessary
to define the following:

. Certain key functions needed by many of the system

S MY T

T - AR AT T - i

p) o

4 N 3

| Frocess 3 | Process 1| |
‘Extended |

machine '

A) \ N

User
programs

Bare, (processes). :

machine:

(Operating system software) i
‘ ‘
" Process & Process 2|
V.. '
FIGURE 3.1 Extendéd Machine Concept of a-
& Generalized Operating System ;
3

A f o A TR
a3 * & R -

e i oA
o o e - Y £y

RS CTE

s

. 44 -

modyles: could be separatéd into an "inner extended
machine”.

. Cértain modules, which weré not utilized as key
functions yet still ngratinngYStem’modulgé, could
be Separated out and run on ‘the extended machine in

-ngéntiéllz ﬁheréame'way as a user's process.

It is, therefore, apparant that :each module of the operating

system must be identified as running either in the inner

extendéd machine, the outer extended machine, or as a

process,

For further clarification, Madnick and Donovan have
generalized the inner/outer extended machine concept into
levels of the extended machine, and all operating sSystem
functions that run as processes can interrelate and are

generalized into layers of processes. The Kernel of the

operating system then is all these modules ‘that reside in the

extended machine and, therefore, do not include operating
system procésseé,

For purposes of the Sample Operating Systémvdesign, the
basic functions of the operating system have been placed in

the Kernel, and as many tasks: of the operating system as

' possible have been placed into separate systém processes.

In this heirarchical implementation, we impose the ‘following
restriction: a given level is allowed to call upon the
services of lower levels only; i.e., those levels closer toé

the bare machine. This restriction requires well-défined

Sl

intérfaces and synchronization schemes. ‘throughout the Sample.

'-Operating System.

Figure 3.2 graphically portrays the héirarchical
operating: system structure.

The three .concepts .impleniented for the design of the
Sample Operating: System design (that is, process focus,
.extended machine ‘concept, and héirarchical structure) have
evolved into a system with the following féatures:

. process synchronization semaphore, used extensively

for resource allocation synchronization;

. message: sy3tem for interprocess communication;

. five levels and layers of the Sample Operating System:

Levels =~ Process Management, lower module
Memory Management module)
Process Management, upper module
Layers: = Device Management module
Supervisor Process module
A brief description of the function of the levels and layers
is provided to further clarify the structure of the Sample
Oper;ting,sfstem;
3.2.3 PROCESS MANAGEMENT, LOWER MODULE:

This module enables the Sample Operating ‘System to
support multiprogramming and the basic system primitive
operations required for interprocess. synchronization.

The basic primitives as previously described, are the

so~called P-V operations. Both operations act on a semaphore

- 46 =

Cémponents of -operating .system

(v 4 s

| Operating systeit}
I Process A

[Operating systei |
Process B ‘

“Process. 3. |, Process 1.

" ‘Outer
‘extended
machine

Inner
extended:
maghine

User programs
‘(processes).

‘Bare
machine |

(Rey operating
" system. functions):

(Remainder of Key opera-

‘ting system software)

Process 4 | | Process. 2|

FIGURE 3.2 Heirarchical Design Structure of
a Generalized Operating System

PO N

W arnr Ld N

- 47 -

which has an associated integer value and serves as a
counting’ lock as follows: 7
P-~opération: TIF Semaphore Value > .0 then
Value = Value~-1
IF Semaphore Value < O then
Value: = Value-l and the process.
is ineligible ‘to allocate the
given resource.
Vmoperation: IF Semaphore Value > O then
Value = Value+l and no process is
ineligible to allocate the given
resource.
IF Semaphore Value < O then
Value = Value+l and there is a
‘process waiting to allocate given

resource.

Since there is. a semaphore associated with each resource

the P-V operations can serve as a lock where semaphore value
initially = 1. By requiring a P-operating before accessing

and a V-operating after completion, the integrity of the

resource is ensured.

3.2.4 MEMORY MANAGEMENT MODULE:
‘This module performs the operations necessary for

dynamic¢ allocation and freeing of memory for job partition

allocation and for allocating space for use by the'operéting

system.

“» 48 <
3,2.5 PROCESS. MANAGEMENT, UPPER MODULE:
This modulé provides thé routines for the control of

processes; i.e., process creatidn .and deletion. The odile

also provides for intérprocess .communication with buffered

:messageéu This modulé was split from the Process Management,

lowér module since it depends on the functions. of memory

management to allocate -or free mémory areas to store system

buffers to store interprocess communication messages..

3.2.6 DEVICE MANAGEMENT MODULE:

A This module runs as a separate process; hence, it is
considered a layer of the operating system. There is one
device management module per device which provides the
routines necessary to issue the appropriate input/output
commands to external devices. This module depends heavily
upon the interprocess communication message facility to issue
I/0 and to interpret the status information for a return
message. Device management for this service is simple since
all devices -are dedicated and consist only of card readers
and line printers.

3.2.7 SUPERVISOR MODULE:

'The supervisor module, also runs as a separate‘proéess
of the Sample Operating System; specifically, one per job
stream. The supervisor provides interfacing for all the
routines needed to run a job. 1In particular, the supervisor

process is responsible for coordinating the following:

e

UL

E SN

e b

i a o T T T ;s
-
1).. ‘Reads: in: .a job streéanm. ‘ | L ;?E
2) allecates & partition of memory for each job in
sequerice. :
3) Creates and starts the appropriate device manage- ég
ment process.
4) Loads the user's object deck into the partition. %
5) Creates and starts a process in the given partition. :
~sj.nce‘th;e‘«s‘upervigor'proc’e'sjs is not needed until
‘the user's job ends, it stops running and waits for
a message éiQnailing completion of the. user's job. ‘
6) Finally, when complation is signalled, the super-
visor cleans up by destroying the allocated parti- }
' tion of memory, and goes to the next job iriput 3
: (%} ’ stream.
~ 3.2.8 USER'S PROGRAMS AND PROCESSES:
g Initially the Sample Operating System .Greates :a single
%“ process for each job; however, the user is free to create
}5 additional processes to run in parallel. The ‘user'"s: job runs %
;g\ in problem state with non-zero protection key assigned;
? thereby, restricting user access (to privileged instructions
5 and memory areas external to the user's allocated partition). %
The nucleus routines, such as P-V operations, are ;
restricted from the user and cannot be accessed by the user's :
E; job., However, the inteérprocess communication message
" facility is available to the user and can be utilized for i
(~1 interprocess synchronization of user processes. {

A R R s M T LA O S T ~
R SR e ”
N
3.
"

e baslc design PhllOSOPhY of the Sample Operating

-y
’ ' *hoe
R

System- and. a functxonal descflptlon of the/maJOr e ahe ; :;
Been presentéd as the system is. cuiréntly configured. The

hext two chapters will first define the requirements as they

[y

egi\stﬁ for e s"*““ié' ~°9er‘atin9 System; and s:ecqnd‘, assess

T RN

e e ¢

" o

atsi s

Rl

Ll

I

*

o

E;;’;.-‘,“_ s

e e
F!?
<

t

it

i

i

2

- 81 -
1
REQUIREMENTS DEFINITION
The ‘purpose of this chapter is to .describe the, méethod-
ology of the requirements definition: for the Sample ‘Operating:
. Sy§tem. Thé reguirements wére.definedﬂfrom~a description of ?
the Samplewbpe:atfng:SyStém~§nd»pro§ram listings as provided 2
*by<Madnfck and Donovan, subject to certain guideélines :
established by Andreu to dinsure that as much as possible
the requirements are defined in a clear, correct, -and :
concise manner: f
It must be stated at the outset that requiréments g
definition was the most time-consuming portion of this i
analysis. The definition phase was repetitivély,ite;atea‘as ;
requirements were defined more clearly; make less ambiguous, é
éqrreéted; discarded, .combined, separated, ‘and new require= ;
ments .added continuously. Sincé one can become completely
embroiléd in the problem; it is essential that the require~
‘ments be reviewed periodically by an interested third party.
;A The initial ﬁéthodoiagy for requirements definition was %
%i ‘proposed by Andreu?> and was based on his experience with i
EE the problem. .Andréu began with a sét of requirements for a j
gé database management system and sought to refine those !
aé requirements as they existed. For the: Sample Operating E
?% System, however, no such precise list of requirements ;
X o . ‘ , ,) :
%% - Zsﬂaphﬁéz Andééu, "4n Ezercise in Sofﬁ&are Desigh: From
t; {«; Requirgments to Design Problem Structure”, MIT Sloan School |
: T unpublished report (June, 1977), pp.3-1§. .

- 52 -

éxisted. ‘Thérefore, it was nécessary to draft a :set of
requlrements from a textual descrlptlon of what the system
does usxng program 1istings. o r;solve unclear issues.
Consegiiently, ‘tile. Andreu methodolody was supplemented with
additional guidelines based on theése experiences in defining
requirements.

The. following section will define the rigthodology and
by way pffeﬁampre; demonstrate what constitutes good or poor

" definitions of requirements.

4.1 Requirement Definition ﬁethédglogz
4.1.1 DEFINITION CLARITY:

Kequirements should be stated clearly .and éoncisely.
It is conceptually difficult to deal with requirements which
are verbose or deal with more than one specific issue. 1In
addition, requirements interdependencies are assessed on a
one-for-one basis. Therefore, each requirement for the
‘Sample Operating System was limited to a single sentence,
covering only one issue. The requirements for the Sample
Operating System are presented in Appendix G, and each
requirément statement is followed by a definition of the
requirement and a statement of implications of that require-~
ment for the design of the system. This format was valaable
for it enabléd a -single sentence requirement definition
statement, yet it facilitated further amplification of the

design. requiremerit which was very helpful in the inter-

g T ST T LT
M e

=53 -
| (‘dépé‘ndép‘c? assessment phase:
4:1.2 $COPE OF DEPINITION:
. Requireménts must not be stated in very general terms, jz
or in terms deadling with issues beyond the scope of design. b
For example: The\dperatihg.sYstem must be capable of
maintaining memory resources. This is a ‘general state-
ment characteristic of all operating systems by
definition. This statement does nothing to further 1
define characteristics of the Sample: Operating System. %
In addition, no requirements were defined for the
following functions: system reliability, documentation,
and system security, simply because none -of these
(~\ issues were addressed as necds -of the Sample Operating
} System, and, therefore, were heyond the scope of the f
design.
4.1.3 IMPLEMENTATION INDEPENDENCE: ,;
As stated by Andreu and Madnick24 requirements should %
not specify an implementation scheme that may be used in the
design of the system. Clearly a requirement which specifies
how a requirement is to be implemented biases the design
process. -Specifically, such a procedure precludes the
E“ design from considering alternative. solutions to a given
5» design problem. The specific implementation scheme may be
1 appropriate within its limited realm of consideration, but
may not be optimal in the dontext of the overall design

(3 problem. Finally, any implementation scheme, specified
B 5 T2 o ot

4And?eu' and Madnick, p.42.

S
. . \

T

- M3 priori" inevitably affects othéf requiréments in other

e

Semg e P .- [T T) By xS L
S LY e - oy A DI TR NS Yo iR
5 PR . B ‘ B

- B4 s
Htagés of the design process: The criteria for requireients.
gefinition is simply that the requirénét definition must
state only what is £ be done and not how.
For exaniple: the 'statémént, "A process can issue a call
0. read” the text and: name of the message ‘sender"; this
Violates the guidelines since theé statement defines the
means of implementation. The requirément focuses on
how & process recognizes the text and hame of a message
sender; rather than what was intended.
Therefore, the requirement was re-written as: "The
receiving process may read the name and text from the
originator".
4,1.4 SYSTEM STRUCTURE INDEPENDENCE:

aAny definition of requirements should avoid biases
toward pre-established assumptions about the structure Of the
final design according to Andreu. 23

This- guideline is very ‘subtle in its application; and
represented the most difficalt guideline to fulfill since
the Sample Operating System.had been designed .and was
described in terms of its final structure. Conceptually,
anyone seeking to define a non-trivial system must organize
‘his thoughts in some manner to avoid total confusion. The
most logical framework for organizaxion is in terms of the

‘functional requirements of the system. The most general

&5 Andreu; "4n Exercisé in Software Desigﬁ”; p.4é.

- 55 =
functional requifemefits for an Operating. system focus tpon
the role as & resource mandger Of memdry, processors,
devices, and files. Therefore, one ténds'td~aéfine“rgqﬁi;e+
ménts ‘in ‘the framework, and the trivial decomposition
solution would define four distinct subprobléms which
correspond to those functional requirements. Clearly, such
7«a’solution\wOuld offer no new insights into the structure of |
the: design problem. |
‘ For example, the requirement "This operating system
must be pedagogical and modularly structured", was

considered to violate the guideline. The Sample

Operating System: was designed to be pedagogical.

. Although it is generally recognized that the most

% (W/ effective method of achieving pedagogical clarity is

L through modular design, such a statement is constraining

% upon the system designers and, therefore, was re-written

as follows: "The operating system must be designed as

g a pedagogical tool™. The resulting decomposition of

L the design requirements should indicégevwhgt degree of
modularity was achieved in the .actual design.

4.1.5 INDEPENDENCE AMONG. REQUIREMENTS:

This guideline implies that all requirements must be
semantically independent; namely, that redundant require-
ments must be eliminated.

E For example: the two requirements "Basic system

primitives and certain routines are restricted from the

e %
Y
M

"P'»W"Y)\H’vr

- 56 < .-

dser, theé use of which will geherate an error™ and
'*TheAo@éxétin9f9y3§§m%éhail.préteét»itself;fxqm«ﬁhé usé
of supervisor routines by the uder™ are redundant; the
former beéifig implied by the latter. The former
requirément: was, therefore, eliminated.

4:1.6 SIMPLICITY: | | é
Each requirement should addréss one well-defined \

‘capability that the final design is to demdhstrate. The

purpose of the decomposition methodology is to asseéss inter-

dependencies among individual requirements, ard to. group

ments by definition masks the decomposition.

3 . Many requirements were originally defined with multiple

.

capabilities: It was necessary, therefore, to separate each
capability with a separate requirement.

For example: the following requirement, originally

Aharai > o ok

written as a single requirement, was separated into.
% four distinct requirements: "A process synchronization

mechanism must. be provided:

T

1) to serve as a lock on a database.

? 2) for timing of synchronous processes.

! 3) for synchronization of the message facility..

4) to lock a device.

é 4.1.7 NO STAND-ALONE REQUIREMENTS:

: Requirements which are only remotely concerned with the

(jﬁ final design should be avoided; for example: features which %

P
B S ,"
PR 4 LA et o % o >

Y e

s gt

Y 5 C i e PN [=i L mem e P o * . t ey

< 55 =
may be-added to an «éperéi:,i:oriai'l" ‘system at a later time
iflustrate: this pdint.
 Fot example : ‘The reéguirement, "The supérvisor progess
must be modularized .80, that improvements. to ‘the: system.
cah be easily accomplished", satisfies this guideline.
The requirement indicates that improvements to the
system are anticipated; yet it ddes not limit the
réquirement by specifying what improvéments will be
made later.
4.1¢8 PLAUSABILITY:
| Naturally, a fequirement should avoid the impossible;
therefore, statements 3hall be eliminated which imply
requirements which are:
. not available with current technologys
. in violation of fundamental physical requirements;
. clearly violating other requirements.
For example: The requirement, "The input/output
devices are limited to card readers for input job

streams and line printers: for output", implies that rno

spooling system is available. This in turn dictates
that job scheduling be accomplished on a first-come,
first-served basis.

Initially, it was felt that such non-capabilitieés
(i.e.; lack of spooling capability and lack of file
'system) should be explicitly’stgtegvas~aureqhirémént

rather than inferred. However, the assessment af

sequirenents for facilities which do not exist would .
have been difficult to aécomplish. Theréfore, the lack
of a certain capability was not addressed in require-
ments: définition. | '
In addition to the previgus guidelines established by:
Aﬁdreu, x%he'following'aéaitional guidelines were developeéd.
4, 1.9 SEMANTIC INTERPRETATION®

‘Qhéi:equi:emegtswshquld“be defined in a manner ‘that
limits seémantic interpretation. This guideline resulted
frém an examination of the various "problem staterient
languages"” which -are currently being investigated. Stating
requirements formally, in a problem language statement,
c¢ould not only reduce the ambiguity of the requirement, but
aid in the interdependency assessment phase. Although no
specific language was employed for requirement definition,
the basic structure and intent of a rigorous definition
ignguageuwas used to define the requirements; specifically,
the requirements were defined as follows:

1. Utilize genérally understood terminology; for

example, "reclaim memory resources" versus

"garbage collection". Reference to functions was

by formal terminology job. scheduler.

A ’ 2: Avoid terms which are not commital; for example,

"operatihg system must supply ... " instead of,
"operating system may or should be capable of..."

3. Recognize the distinction between existence

Ty e n v dae s has T wre i 4w ede o maw a7 m e

==

M
P
A
w3
—

=59 -
statements. .and jperformance statements: For example,
the requiremeért; "Thé process scheduler must time-
§lice CPU ‘usage among réady processés to achieve
milti=programming", implies the existence of .some
time, quanturi:
The actual performance requirement is stated
‘separately as "A process must be blocked, and con<
trol released to theée process scheduler when a time
‘quantum of 50 ms is exceeded".
Limitations implied by existence statements must be made
ggplicitxin,a;performéngeHStatementu
4:1.10 SCOPE OF REQUIREMENT: DEFINITION:
The requirements must be defined at the same level of
scope. The customer, in tﬁis4¢ase\being the person for whom
4 system is designed, must have a macro-level objective

which the system must be designed to satisfy. P. Mandel and

€. Chryssostomidis state:

"The objective of most problems: that man is capable of
conceiving or is interested in solving is that of
choosing the course of action which subject to. .pre-
vailing constraints, optimizes the 'well being' of all
coru:;ex:ned."26
The following concepts have been identifiéd at the outset of
the design process.

. An objective function to be optimized for the design

process.

ZaMandéi and Chryssostomidis, p.85.

- 60 =

. Prevailing constraints, whiéh imposé limitations upon

the designer.

. Requiréments flow directly from the customer in

;éépqﬁSésﬁb\thé oveérall objective: of the system design.
Thé objective functidn usually takes the form .of a multis<
matrical exPression to be optimized and for most large-scale
computer systems, consists of the maximizatidn of throughput
or minimization of response tiﬁe.

The objeétive\ﬁunCtion~of~the Sample Operating System
is pedagogical clarity and, therefore, it is very difficult
to state that the objective function -has not been fulfilled.
For the purposes of the design of the. Sample Operating
System, a design philosophy has been identified which
defines the design criteria for the system on a macro-level.
The requirements that comprise the design philosophy
influence each of the remaining requirements and, therefore,
were not incorporated into the assessment process.

The design constraints usually seérve to limit the
permissable range of solutions of the problem. The
constraints, then, impose limitations on the designer which
affect the global design~§roblem. In the Sample Operating
System, certain hardwa:e'Cénstraints were imposed "a priori"
upon the design problem. Specifically, the operating
system must be designed to run on IBM/360 hardware. The
implications of this constraint affect certain basic
functions of the operating system. Since the design con=

straints have been specified "a priori", such constraints

s

G S N S LS TS

-l L
Ty T, v

- 61 =
have béen séparated from the remaining systém requirements
the constraints répreseént limitatiohs on -system design.
Finally, thé system requirements are defined in direct

response to the customer's objectives. The system level

reduiréments must be defined at a level below the most

general ‘of system level statements, yet remain above the

level which begins to limit the options of the designer.

4.2 Summary
The reguirements for the Sample Operating Systém were.

defined in two iterations. The preliminary set of require-

ments was defined initially and are presented in Appendix C.
The second or final requirements set was defined aftér the
initial application of the decomposition methodology and.

are presented as Appendix G.

RS

e

- 62 =
CHAPTER V
INTERDEPENDENCY ASSESSMENT METHODOLOGY
The purpose -of this chapter is to establish the guide=

lines th&t:were used for thé assessment of interdependencies

MMMMMM ~

:bétwegnfpai:5uof»requixements. THe -assessment was: conducted

on a pair-wise basis according to the following definition

- ¢f interdependence.

Two. réduirements are termed interdependent of the

.design decisions made with respect to. one requirement -con-

straint, or influence the definition of the: second require-~

menit. Thus, thé‘interdegendent relationship between two
réquirements can be viewéd in two ways:
GggEo:tiYe: in the sense that the two requiremehts
are compatible; meetiﬁg one requirement will help
to satisfy the other as well.

Conflicting: the interdependency is such that some

trade-offs must be established between the two
Yequirements in the later stages of the design
process,
The result of the assessment process is the .decomposition
of the global system requirements into a number of sub-
problens, which ideally will be a’collecti¢n of highly

dependent requirements.

5.1 Interdependency Assessment Methodology

The methodology for interdependency assessment proposed

- 63 =

'?b,ii Aanf‘i?éu/ consists. of a pair-wise assessment -of thé inter-
dependéncies between requirements by ‘the generation of
"qbn@eptual\mbdéis“~Within whose context the assessment c¢an

;b‘é made: The purpose of géneratingd a. doncépti;'al model for

the assessment process is to have a specific mental frame—

work so that the process is consistent and. conceptually
rigorous: The following guidelines have been pfépqsed by

Andreu, for the genération of conceptual models:

. ‘Scan the requirements in orxder to develop loose

conceptual models of the system.

. ‘Supportive requirements can be identified by
visualizing a conceptual model in which a possible
implementation would allow for commgniprocessing.in
the final system in order to meet the two. require-~
ments involved.

. Supportive :equirementS‘can be identified in cases
where two-distinct requirements call for similar
functions to be performed in different ¢ircumstances
in the.final ‘design.

. Conflicting requirements can be identified by:

.. searching for deadlocks

s+ ldentifying when a given requirement imposes
limitations or constraints in other requiréﬁentst

.. identifying the need for "symmetric" processing;
that is, additional processing to meet a given

requirement is necessary.

=

N AT PN E A R S A G el A2 VR N TR n £ TS R

The procedure of assessing all the interdependencies 3

for a 1atqewytem,qanlbécome'bﬁ:éehsama Therefore,
andreu, has propéséd a set -of procedural guidelines, based
on his experiences, which were helpful in avoiding .some of
the pitfalls of this time consuming process.

; Establish an order for the assessment to be made.

+ Write down corceéptual models: as they occur.

. Avoid going ‘backwards: to .renew :an assessment made
previously. Finish the -assessment process:and then
return..

. If the assessment of simrlarwrequiremgnts“becbmes
coﬁﬁusing change to a different set.

. If no conceptual models are apparent skip the
assessment until one is available.

. If one feels uncertain or lacks confidence in the é
assessment process; stop; and come back to it later.

. A second assessment pass is useful, since it enables i
one to. employ new- conceptual models and to review ‘the.
assessments which have been previously established.

In addition to the guidelinesrestablished‘by Andreu the
following additional guidelines were identified.

In the case where the assessor's experience is lacking,

the results of the assessment process should be reviéwed by
another interested third party in order to:

. verify the conceptual model.

. verify the nature of the interdeéependency.

. verify the resulting adjacency matrix.

KA S S e LA ST s N S sz :Z::v‘“:"" Frpee \.ﬂ::ywv:‘-‘-fﬁzsv;.,‘-rm“w?: T e - - S e G R A ety

A

- 65 =
In order to define a more rigorous concéptual model - , 3
fof the agsessmeht process, the following assessment
* témplate ‘was imposed upon -each dsseéssment: ' A
1. Does the first requirement conflict with the
implementation of second reduirement, ca’usiég‘
deadlocks, symmetric processing, or imposing
limitations? For example, the first requirement,
"Systém resources must be allocated to .a job prior |
to being allocated a processor". The user ;
resources (i.e., processor) are allocated at the
user level, and the system resources are ailocated
at job level,; which requires symmetric processing.
2. Does the first requirement: support the implementa- ’
tion of the second reduirement by common processing: g
or .do they call for similar functions to be per- E
formed in different circumstances? For example,
the first requirement, "System resources must be
allocated to a job prior to the joh being made
eligible to run" is supported by "the supervigor

process must schedule jobs and prepare the jobs: for

execution". In this case, the supervisor process ;
controls the allocation of resources for each job,

pteparing ‘them for execution.

5.2 Summary

A pair-wise interdependency assessment was conducted

7
ki ;

-decording to. thé -guidelinés previously established for each

......

in the seénsa that an interdeperdency bétween régquirement #8

© and #30: implies an interdépendency between ¥30 and #8.

Therefore, each requirement was assessed with the reduire-
ments that followed it. At the time of assessment, an indi-
caticn was made whether the interdependency was supportive or
conflicting, and a brief stitement of the rationale for the
interiebeﬁdehcy'was:madg;

As was the case for requirements defimition, the
interdependency assessment process tgok:placg‘in two-
iterations. The preliminary interdependency assessment is
preésented in Appéndix D, and the final interdependency

assessment is presented in Appendix H.,

AR
- "
RS ST A

!
f B2
B
o<y
e
G
4

e
i
7
I
R
.,
=t
ta
34
3.
B
”

\\\\\

g

)

e O
O 2 R - =~ L P A,

e T

- 67 =

CHAPTER. VI
FIRST ITERATION: OF THE DESIGN PROBLEM

‘The inte:depggdgncigs:agsgésad‘bétweenwpairs“pf require-

ments were formed into an adjacency matrix and input into
‘the software analysis package developed by Andreu. This.
«éhabte; wWill present an analysis and discussion of the
resulting problem structure. The analysis‘énd‘discugsion
will consist of the following sections:
. An analysis of the resulting problem structure for
the first iteration.
. Discussion of the main subproblems.
. Discussion of the subproblems generated by a sgcqu
decomposition.
; Relationships among. the main subproblems..

. Motivation for a second iteration.

6.1, Analysis of Problem.Structures

A total of sixty=-five requirements were input with the
software analysis package for decomposition. Appendix E
presents a copy of the output of the analysis and will be
frequently referred to during the analysis. The analysis
provided as follows:

First, the data, in the form of links (interdependen-
cies) between nodes (requirements) was verified by checking
that all assessed interdependencies were, in fact, present.

this was accomplished using the "NOLK" command.

ST Pl e Rl M s T R T e

Y

s
R e et e

2 L e e AT SRS N

P

- 68 -
_Second; ‘all isolated nodes: those nodes with no
interéonneéting links were identified: As a procedural

¢onivenience, the initial graph was input with several extra

nodes. It is possible to deléte nodes during the analysis,

but no new nodes ‘may be added. Therefore, in order to

enter new nodes, one~m§9t=gad¢finé the entire graph. To
avoid this time=-consuming process, extra nodes were padded

into the .graph, and the graph saved with the padded nodes.

A working copy of the graph was generated by identifying -and
deleting isolated nodes and then. saving the temporary

‘working copy:

6.1.1 MAIN SUBPROBLEMS:

The adjacency matrix was decomposed utilizing the
8teps outlined in section 2.3 and the results including a
heirarchical tree are presented in Appendix E. The -design
requirements decomposed intd six clusters or main sub-

problems (abbreviated at MS), of twenty to four members each.

‘The decomposition was generated using the so-called

heirarchical clustering method =3, the following evaluation
parameters resulted:
Strength: 1.9864
Coupling: .8674
Measure: 1.111%
Strength was defined as a normalized evaluation Qf
subset internal coherence; that is, how tightly coupled the

nodes in.a given subgraph are. Coupling is defined as an

fradens

-4

TR

HERT

RIWREY

T

IS

TR P AR R i L3 OIS

T RN AT

- 69 -

evaluation of the extent to which two subgraphs are inters

dependent. Measure équals strength minus coupling. The

‘évaluation parameters obtained are important in a relative

dense, since theré is no absolute valie of any parameter

which indicates a good decomposition. A comparison of
strength and coupling was made to make some statements of the
decomposition. A coupling/strength ratio = .43 was deter-
mined indicating that the coupling between subgraphs was
nearly half the measure of intérnal coherence. This
indicates that the subgraphs are internally coherent (high
strength value) and still have a reasonable degree of
coupling. Whereas a small coupling value would indicate that
the subgraphs were relatively decoupled.

'In order to further investigate the coupling evaluation
Andreu27 suggests a second decomposition. in which each main
subproblem is treated as an. entire graph and decomposed into
subproblems. Since the coupling parameter increases as '
subproblems are defined, and strength remains constant, the
decomposition of the main subproblems into subproblems
decreases the overall partition measure. If the coupling
parameter ‘between main subproblems is low originally, the
main subprobleéms are fairly disjoint and a second decompo-
sition should be investigated. In the ideal case, a main
subproblem may exhibig,sudh internal coherence (high

strength) that it does not decompose. into subproblems. This

ZZAereu; ”A'systématic~A§pfoqéh to'the Destgn and Struc-
turing of Complex Software Systems", p.277.

—— e e sy o A e .

570 =
§b§¢§ﬁ3 the motivation for a4 second decomposition; that is, -
a-main subproblém was considéred well<defined if no dedom=
position resulted. @hefefdte,‘é»seéénd“aééompséftion‘OE
each fain subproblem was performed; the results are presented
in.Appendix E.
6,2.2 SECOND DECOMPOSITION STEP:

Each main. subproblem resulting from the original decor~
position was individually decomposed as,féllows:

1. A separate graph was defined foér each main sub-
problen by eliminating all nodes external to the MS
under analysis. This was accomplishéd using the
"DEMO" command. The nodes of the current are re-
fumbered at. this point, which required rather
awkward collating schemes to keep the original set
of requirementslsynchronized‘ﬁith,éaCh new sub-
graph.

2. Each MS was decomposed according to the methodology
of section 2.3.

O£~the six MS originally defined only two,.
MS 2" and MS 3 further decomposed.
6.1.3 ANALYSIS METHODOLOGY..

In order to analyze the ‘structure of the design problem
implied by the decomposition technique, it is useful to
investigate the following entities:

. Elements: requirements éontained within a given

subset.

Lo | o . ;

N) ?4 - i . 7 ‘ .
. Bxternal Interdependencies: links that exist among ;

the eléments of different subsets. The command
“PRLK" was useful in identifying thgiekta;ha%'links; é
Reéalling ‘thé core set identification process, ceértain nodés

were identified as seedzng&é§¢<ab9ut‘§highAdtherﬁnod¢s were
'ciuéﬁeged; In o?der%to‘iﬂentiﬁykﬁhe main focus -of each

‘diuétengone examineés the requiremengsiinvolved in. the é
largest number of interdepehdenc¢ies; i.e., the node in an MS | |
wi£h~the,iaggest number of links. It is assumed that this

is the seed node for the Mé and is, therefore, related to.

the main fogus of that MS. It is also noted that a given

main subprobleém may have several nodes with nearly the same:

numbet of links which could be called equivalent ‘seed hodes-

A closer examination of these nodes must be undertaken to.

determine the nature of such a main subproblem.

6.2 Main Subproblems

The problem structure resulting from the application -of
the decomposition mchodology is presented in Figure 6.1.

Théiprobiemxst;uétqre~was intexrpreted as composed of the

main subproblems, depicted as blocks in Figure 6.1 and the

subproblems, generated by a second decomposition, depicted
i as circles within the parent MS: The interdependencies
o among the elements of different subproblems were generalized

: into interfaces which are required in désign between sub-

s probléms.
AR
3
X .
&
L

v

NGOHocozumE uot3jrsoduodag oau Jo :OHumumuH
3ISITI 943 Aq pordui 9anjonils weqoid T°9 FIUNDIA

mcod»o::m
u:mEmmmcmz
a0TADRd

Kyriroed
abesson
N =
o
o
; :oauaooﬂﬁd
. W mouzommm
wﬂu:msmmm:mz KioudlW pue 90INn0SaYy
X T mwmuoum uowﬂbummzm—
. ke S - o -

m¢d0ﬂam
wEﬁB
mmwooum

suotjoung 3roddng
futunrexboxd-T3I TN

s 3 - ‘ | 2?%
The. interpretation of main subproblems should be
intuitive If the MS are well-défined, Since each MS was
built around a certain seed node, interpretation became a '2
problem of identifying the node and understanding how the ‘ é
other member nodes were built around it, ,E
The more interesting part of the interpretation was to
i identify the counter-intuitive or: non-obvious results. {é
l These results suggested a structure -of the design that was !
not -apparent. at the outset or perhaps errors in the analysis.
b In either case; it was the identification of non-intuitive
Et results that represent ‘the value of ‘the process. ;
L(The following discussion will highlight the general :
K = and specific characteristics of the design structure §
|) indicated by the»l decomposition. methodology.
f The decomposition methodology generated six main sub- ;
%T probiemsw;t“the end of the first decomposition. The six %
E? main subproblems have been generalized into the following. :
: groups: :
& 1) Multi-programming support functions. : :
2) Process management functions. :
4 3) Resource and mémory management functions -
i . 4) Supérvisor¢pr6cess functions
| 5) Device management functions
6) Message facility
The requirements statement are decomposed into these six
{”x main ‘subproblems and are presented in Appendix F.

- 74 =
The following discussion will highlight the character-
istics and discrepancies diséovered in each main subproblem.
6:2.1 MULTI-PROGRAMMING SUPPORT' FUNCTIONS:

‘The requirements which:decoipdsed into the multis

programming support main subproblems were all concerned with

the features. and facilities that must be pfovided by the

_ operating system in a multi-programming environment. These

features include:

. a mgltifprogfammihguenvironmentwmu$t.exist

. job. écheduling

. re-entrant and pure code

. supervisor procsss support

.+ synchronizatica techniques

« Pprotection zmong jobs
The seed node was requirement 5, "The operating system must
provide for a multi-programming environment"..

However, it must be noted that requirement 43, "P-V
mechanisms must be provided", had a larger number of links
than requirement S. The P-V mechanism provides the basic
:m@;ti-pfdgramming suppoitwbyugynchrqnizing operating system
functions, but it represents a specific tool rather ‘than a
focus for the main subproblems. In addition, the P-V
mechanism is used for four distinct funétions. Therefore,
it was decided to further investigate this regquiremént and
attempt to redefine it:

Some of the requirements have a dual functich, and,

e

PP sty

= 15 =

therefore, ae¢bmé¢sed inté'tbié‘MSJ‘whiéh»at £itst appeared
lsouﬂﬁérﬁiﬁtuiﬁive: for instance, the requirement, "Device
‘handler routines must support maltiple job streams from
card readers". intuitivglgthne would have -expectéd this.
requirement to fall squarely in: the device management MS.
However, the issue is the requirement to support multi-
‘programming: by providing input from multiple job streams.
It is expected that such dual requirements will also have
interfaces linkages between the two MS in which they .seem
to belong. This will be investigated later.

This MS did not decompose updn thé sécohd decomposition.

' 6.2.2 'PROCESS MANAGEMENT:

The smallest computation entity defined by the operating

system is. the process; therefore, the operating system must.
recognize this feature and provide the necessary functions
for support of the process. The requirements which decom-
posed‘intb‘thisAMS constitute the largest set of requirements
in a given MS and deal with those basic functions required ‘
for process support. These features include:

. Process creation/destruction

. Allocation/De=allocation of a processor to a

process'

: Time-slicing

: Exteénded machine instruction environment

« Process Scheduling

The seed ncéde for the MS was requirement 6, "The operating

SRR e T
L&.

~
D
P

- 76 -

System. must bé process oriented"; which is indeed the focus

of. the Ms.

Reéquirement 44, "An interrupt handler must be provided"
had nearly the same number 'of linkages: as regiirement 6.

Time slicing CPU usage requires an interrupt handler;

however, this is not the only ‘function of the interrupt

handler. This requirement presented problems later in ‘the
interface analysis. Therefore, it was decided to redeéfine
the. requirement by separating it into a number of distinct
interrupt handlers.

The: decomposition included one counter=intuitive
requirement.

"Message facility must be accessible to all processes,"
It was expected that this requirement 'would. decompose in the:
message facility MS. Upon‘éxamingtion of the intexdepen-
dency assessment and the conceptual mcdels used :for this

requirement, it was noted that the requirement is-defined as

being interrelated with three requirements in the MS and

only one in the message facility MS. The issue there is one
of process agcessibility to the message facility, which is
the primary means for interprocess. communication. Therefore,
this requirement related more closely to process support
than to the message facility.

This main subproblem decomposed into th¥ee subproblems

in the second decomposition.

e e

- 37 =

'642:3 RESOURCE AND- MEMORY ‘MANAGEMENT FUNCTIONS:

‘This main sibproblem is composed of requirements which
deal with resource allocation in general, and metiory

management in particular. The functions concérning resource

allocated include:

4 Reséurcesfére»reqqgstgd,thrqugh»the supétvisor.
. Information tables are utilized to monitor resource
allocation,
. Opérating system can dynamidally allocate memory for
ité-éwn‘gses
The requirements dealing with memory management functions
include:
. The mechanisms by which memory is: allocated,
protected; and reclaimed.
This main subproblem essentially has three nodes of similar
linkage value. The three requirements all deal in general
terms with resource and memory allocation; but no clear
definition is apparent; It can‘bevargued’that memory
managemént is a subsét of the general i':(asho:mr:ce:‘mana'i;;;‘-':\nm‘evx‘;‘1':‘~
function of the operating system. It is noted that this MS

has the largest number of interfacing linkages with other

main subproblems. This was expected since the members of

the MS seem to cover such a broad area of responsibility.
This requirement decomposed into two subproblems in the

second decomposition..

S - £
i
TS b

N TN " <
SRR PR

JEIE P A

- 78 =
6.2.4 ‘SUPERVISOR PROCESS:
ThHe requiréments which decomposed into this inaiﬁ sub=
problem a1l deal with theé functions of the supervisor

process. The supervisor process is that process which

'scheduiles jobs and prépares them for execution. Many of the

functions normally performed by the supervisor were
decomposed into the multi-programming support main' sub-
problems, particularly the job scheduling function. The

supervisor process is a subset of the functions required for

multi-programming support and, therefore, this result seems

to make sense. It is also noted that there are a large
number of linkages between the supervisor process main

‘subproblem and the multi-programming support module.

@ The existence of a.supervisor process: module distinct

from the multi-programming support module is considered a
significant insight into the problem s$tructure. The design
problem structure dictates that both the supervisor process
andfmﬁlti~prdgrammingAsuppo:t main subproblems are dis-
tinctly separate at the same level of comparison and
desetve equal design concerfns

. This module did not decompose on the second decompo=

sition.

6.2.5 DEVICE MANAGEMENT FUNCTIONS:

The members of this module clearly are concerned with
the functions required for device management. These

functions include:

e,

b

-

:() .

1 O : & device managerent routine: | v
. . Devices and. protocols required to support multi- ’
| programmings \ <€
i{i ﬂ The seed node £or this main subproblem was réquirement 36. §
%1 - "The operating system must supply a device management é
g routine." 'This main subproblem decomposed very clearly; é
- that is, it had the highest strength value for all the main §

?5 ‘subproblems which did not decompose on the second ‘é
h% decomposition. ' "ii
4 6.2.6 MESSAGE FACILITY: 1
fj All of the requireménts in the module directly address i
Ef ' thé needs for amessage facility, which is an interprocéss. E
'3' ~ communication techniqué in the Sample Operating System. g
(_) whichvenabxes~gser~pro¢eéses to communicate and :synchronize i
execution, ;

The seed node for this‘main'subp:oblem~was,requi;ement g

46. "A message facility has many requirements since there §

are many features defined for wuse of the facility."

Although the message facility may seem to be .a relatively
less important function of the ‘operating system, the decom-
‘position methodology implies that it constitutes a complate
main subproblem.l It may be that one may generate an entire
main subproblem just by defining a large number of require-
ments for a relatively insignificant feature; or conversely,
this facility may be of greater significance to the -operating

system than previously anticipated.

. . {
- B - - - e T P S S L Y TP g

. - 80 = . 3;
" this module did not decdriposé in the sécond dédoiipo-
6.3 Subjroblens Generated in & Second Decomposition
A-.second decomposition was conducted as described in g
séction 6,1 and resulted in the decdmposition of ‘MS 2 and "E
MS 3 into threé and ‘two subproblems respectively. The 1
térnm subpréBlem~will»be-gSéd to describe the clusters which r i
resulted. from a second decomposition of the main subproblem. ’*f
6.3.1 MS.2 - PROCESS MANAGEMENT yunéﬁoﬂs‘;: | o
MS. 2 dgcompoéed‘into three subproblems as¢fokiqws:‘ :%
1) Ms‘2A = Subproblem A: Process Creation and 5
Scheduling E
‘Thig: Stibproblem is deSignated MS 2A. All of i
the requirements in the subproblem were -concerned ;
with process creation and schaduling. These. E
functions includeéd such features as .initial process é
creation, process identification, process. blockage, !
scheduling, and message facility accessibility.

2) Ms 2B - Subproblem B: Process/Operating System .
Interface ' ‘z
This subproblem is designated as MS 2B. All %
of the requirements in this;subproblem were concerned :

with the extended machine instructions which are the
means by which processes communicate with the ,
operating system, %

- 81 ~
3) M§ 2C - Subpréblem C: Process Time=Slicing

This subproblem is designated MS 2C, All of

the. requirements in this subproblem are concerned

with process time-slicing, the process: scheduler's

role and the interrupt mechanism required to handle

timer inter:upts_.~ As pointed out previously, the
interrupt handler includes many more functions than
time interrupts. This caused some groblems‘in
interfaces descovered in the later stages; there-
fore, it was decided to redefine this requirement
to explicitly define all of its functions.
6.3.2 ‘MS 3 RESOURCE AND MEMORY MANAGEMENT FUNCTIONS:
MS 3 decomposed. into two subproblems as follows:
1). MS 3A - Subproblem A: Resource Allocation
‘This subproblem is designated as MS 3A. Thgs
subproblem was concerned with the allocation -of
résources in general, and the mechanism for memoxry
allocation in particular. As before, this sub-
problem is not clearly defined since it concerns
‘both issues. First, the subproblem deals with some
broad issues of how resources are allocated, to
whom and when are they allocated. Second, the
subproblem dedls with the protocols for memory
allocation and de-allocation; specifically, only
the operating system may dynamically allocate

memory. It was decided to further investigage the

.

Bpx o A Kb Eh s B

‘%

P
PR PRS-

o e e

. P
St A N TR

AT
a

e T eERTLTLGTOS TR S .- m s

e it

- ‘82 -

issués of resource allocation. and femory allocation
in the mext iteration to determine if the Féquire-
ments or the conceptual models were ill-defineéd or
improperly assessed.
2) Ms 3B - Subproblem B: Protection
This subproblem was designated MS 3B. This
subproblem is concerned with the proteéction mech-

anisns for both memory and user processes.

6.4 Relationships Among the Main Subproblems

The relationships among the main subproblems are best
explained by examining the focus of each main subproblem
and the conceptual models used in the interdependency
assessment phase which motivated the linkages. The software
package makes the linkages exélicit through the "PRLK"
command theé results are presented in Appendix E.

The linkage betweéen main subproblems were generalized
into interfaces between the main subproblems. The
following discussion will note the general characteristics
of these relationships.

‘6 .4.1 LINKAGES BETWEEN MS 1 MULTI-PROGRAMMING AND MS 2
PROCESS. MANAGEMENT FUNCTIONS:
1) MS 1 Multi-programming Support;
Ms' 2A Process Creation/Scheduling:
This interface betweén thesé two subproblems

consisted of the mechanisms for providing multi-

TR LT AT

2)
3)
(O
Y 4
6.4.2
‘ 1)

‘- 33 -

,,,,

programiing by process creation, blockage, dnd
synchronization. Prdcesses are created: by tﬁé
systeri-and scheduled in anrouhdérébin‘ﬁashiqp,to
achieve multi-programming of user's jobs.

MS 1 Multi-programming Support;

' MS 2B Process/Operating System Interface:

This interface between these two subproblems
was concerned with signaling processing completion
to the operating system, so that the next process
could begin.

MS 1 Multi-programming Support;
MS 2C Process Time-Slicing:

The interface between theéseé two subproblems
was concerned with the mechanism of time-slicing
CPU usage to achieve multi-programming. The
interrupt handler requirement was included in this
interface; when it seemed to belong more properly
in the MS 2B. subproblem. This pfroblem ‘sSupported
the need to re-examine the interrupt ‘handler

requirement.

MS 1 MULTI-PROGRAMMING - MS 3 MEMORY .MANAGEMENT
FUNCTIONS:

MS 1 Multi-préogramming < MS 3A Resource and
Memory Allocation
The interface between these two subproblems:

was concerned with the mechanisms for usér and

- 84-, ’ . - b
systém allocation of memory. Dyhamic allocation of
memory is réstricted to thé,systemnproéesses;(

B 2) MS L Multl-programmlng - MS. 3B Protectlon
‘The interface between ‘these two subproblems
wasAqoﬁce;ned with prqtéction of user jobs and 1
memory. ghe"intgrfége’did“hot~dealuwith.the
mechanisms of protection, but the fact that pro-
tection mechanisms must exist to :support multi=-
prqgramming,

6.4:3 MS 1 MULTI-PROGRAMMING =~ MS 4 SUPERVISOR PROCESS:
The interface between these two subprobliems was:
¢oncerned with the mechanisms for the protection of user
jobs and; system processes. Protection here is .defined at

the job level controlled by the supervisor.
6.4.4 MS 1 'MULTI-PROGRAMMING SUPPORT - MS 6 DEVICE
MANAGEMENT ¢
'The interface between these two subproblems is con-
cerned with the p¥dcedural mechanisms by -which :devices
support multi-programming; especially the existence of a
-deviéé-hgn@;e:,routine~and the dedication of devices to user
jobs.
‘6.4.5 M8 2 PROCESS MANAGEMENT - MS 3 MEMORY MANAGEMENT
FUNCTIONS:

1) MS 2A Piocess Creation and Scheduling;

MS 3A Resource Allocation:

R s adacd

S% Thé‘intérfacerbetween these two subproblems

o~

= §5 =

was concerned with the use of information tables
to enable the opérating system to monitor processes:
and: resources. This interface expli¢itly points
out that since processes and resources must be
monitored, the operating system should attempt. to
use: the same hééhanismu;o,aqcompiiSh this task.

2) MS 2A Process Creation and :Scheduling;
MS 3B Protection:

The interface between the subproblems is
concerned with identification of procésses. by
symbpli¢~name for protection purposes.

3). MS 2B Process/Operating System Interface;
MS 3A Resource Allocation: '

The interface between these two subproblems
was concerned with freeing memory upon completion
of a job.

4) MS 2B Process/Operating System Interface;
MS 3B Protection:

The interface between these two subproblems.

" 'was concerned with the two state machine concept.
A proces§‘is required to run in the problem state,

all resource requests must pass through a super-

visor. Therefore, protection is afforded by

g“ C . 'y 3 . . . N N .

. limiting the scope of system functions available
‘,

to the user.

- 86 =

MS 2C Process Time=Slicing; MS 3B Protection:

The interface between thése two subproblems is

_concerried with an. interrupt handlér to deal with

unauthorized: memory access requests. This. inter=

' face: Seemes distinctly out of place, until one

recalls that the requirement for all interrupt
‘handlers regardless of purpose, is located in MS 2C.
The lacknog‘definitiog-of.the~inter:uptzhaﬁdier

has been a persistent problem; therefore, it was

rédefined..

6,4.6 MS. 2 PROCESS MANAGEMENT - MS 4 SUPERVISOR PROCESS:

1)

2)

3)

MS. 2A Process Creation/Scheduling;.
MS: 4 Supervisor ‘Process:

The interface between these two subproblems
was concerned with the protocols for user process
creation. The sSupervisor process creates one
process per user, initially; all others are
dynamically created by the user.

MS 2B Procéss/Operating System Interface;
MS 4 Supervisor Process:

The interface between these two subproblems
is cdoncerned with. the generation of an énd-of-job
sighal from the final .user process to the super=
visor.

MS 2C Process Tim-Slicing; MS 4 Supervisor Process:

The interface between thése two subproblems

WL LT

JROvr I

R el

< 87 =

is conceérned with the interrupt handler which
terminates§ usér processing. Agdin, this is the
‘'same péersistent problem of a podr interrupt handler
requirement, since time-runout is just oné of theé
interrupts for which a handler is required.

6.4.7 MS 2 PROCESS MANAGEMENT - MS 5 MESSAGE FACILITY:

1). MS 2A Process Creatioh and Scheduling;

MS '5 Message Facility:

The interface between these two subproblems is
concerned with:the‘usage of a nmessage facility ‘hy
user processes as a synchronization technique.
'Thiswenables'usér‘prqcesséS‘to'gynchronize
Pprocessing by starting and blockingreaqh other
using messages.

2) MS’;B,PrgceSSVOpérating System Interface;
MS 5 Message Facility:

The interface between these two subproblems
was concerned with the mechanisms for message
generation by the user processes.

6.4.8 MS 2 PROCESS MANAGEMENT - MS 6 DEVICE ‘MANAGEMENT:
MS 2C Process Time-Slicing; MS 6 Device Manageméent

The inte:facg between these two subproblems
‘was céncerned with the generation of an I/0 inter-
rupt. Once again; this seems to be misplaced
since the process time-slicing function is in no

way concerned with I/0 interrupt handling:

L e

CLarerviore ety

- 88 =

6.4.9 MS 3 MEMORY MANAGEMENT FUNCTIONS = MS 4 SUPERVESOR
Il’}ROdESS}:»
1) Ms 3& Rgéou:ée*A;lo¢atipn; MS' 4 Supervisor PtQ§§§S{
‘The intérface between these two reqﬁirements-(
deals W§th»the'issuevgf the timing of resource
allocation and dé-allocation, The supervisor
pﬁqbesslcoogdinatgév;llvreséﬁrée allocation .and
‘de-allocation 'for the operating system.
2). Ms 3B Protection; MS 4 Supeérvisor: I

This interface ichdncerpedtWithﬁé%tabi};hipg
protocols for the user destructicn of user
.procgsses.cﬁly. The: supervisor sets up a memory
partition and user procasses are restricted to
that memory area; therefore, they may create and
destroy processes only within that meémory area.

6:4.10 MS 3 MEMORY MANAGEMENT - MS 5 MESSAGE FACILITY:
MS 3A Resource Allocation; MS 5 Message Facility:

‘The interface between these two processés is
concerned with the queuing requirements for ‘the
message‘faciiity. Inzordér,fo; the message
facility to enqueue itself, it must be able to
dynamically allocate a buffer area.

6.44".; 11 MS 3 MEMORY ALLOCATION - MS 6 DEVICE MANAGEMENT:
MS 3A Resource Allocation; MS 6 Devicé Management:
The interface between these two subproblems

is concerned with the use of job control language

TN g AT fE e e v 5
PN - T - P e g e

- 89 -

stacenents and information tables to specify and

fionitor resource allocations.

6.4.12 MS 4 SUPERVISOR PROCESS = MS 6 DEVICE MANAGEMENT:
The interface between these two subproblems is.

concerned with the reclamation of device resources upon

~compietion»¢f'agjobm It is interesting to note that alloca-

tion is mot an issue, because that is controlled in Ms 3

‘Resource and. Memory Allocation.

645 Summary

‘The ‘analysis: of interfaces between subproblems is a

verification procédure which supports the initial main sub-
= problem analysis. Given two subproblems, the nature of the
interface could be intuitively derived based on one's
Knowledge of the way ‘in which various functions of the oper-
ating system are supposed to interface. &xn examination of
the links, which the decomposition methodology has implied,
verifies the expected result. In cases whére the expected
result was not verified, or if counter-intuitive interfaces
were implied, one could go back to the main subproblem and
find misplaced or ill-definéd requirements. The second
iteration of the decomposition methodology focused on a re-
definition of probIém.requi:éménts and a re-assessment of

interdependencies for the entire requirements seét.

Ty ety sy
P S R U AR |

e A ey

LA

i A

5 o .. S e s s o e
T T et T A B AL Tan M A E DAMY IR A RSN et RS ot s, (28

O A N B - s et e S e e, MIL WIS em eI cgg o

- "90 -
CHAPTER VII
SECOND 'ITERATION: OF THE DESIGN PROBLEM

The entire process of requirements definition and inter-
‘deéendenéynassessmggt is very much a learning process. As
one continues to iterate upon the process, the requirements
ﬁecqme more well-defined, and the assessment of interdepen=
dencies more consistent through the application of better
conceptual :models. The second iteration is 'a cumulation of
a series of smaller iterations and reflects a flattening of
the learning curve.

Theianglysis‘of the first iteration: of the design
problem highlighted a number of discrepencies in the
resulting decomposition. The requirements which were
identified as being problematic were re-examined from the
perspective of their role in the Sample Operating System.
Where warranted, thesév:equiréqents were'reddgfined. At
this point, the entire requirements set was reviéWeé‘by two
graduate students familiar with operating systems in
general; namely, Sid Huff and Chat=Yu Lam. Based on their
analysis and recommendations, certain requirements were
re~defined or re-written. The entire requirements set, in
its final form as contained in Appendix G, was subjected to
the interdependency assessment process. This chapter will
point out thé changes made to the requirements set, and
present an analysis and discussion of the resulting problem

structure. The chapter is oirfganized as follows:

PR AT ROV Y $7

T Erean g

PN AT A28

PENCY MU TANCET S TN e rag

ERtese- - ey

ey

e

s 9] =
w,Requi:ements,geidefinition,
. An .analysis .of the resulting problem structure for
the setchd iteration.
» Discussion of the main subproblems.
. Discussion of the subproblems generated by a second
decomposition.
. Relationships among the main subproblems.

. Comparison of the first and second interations.

7.1 Requirements Definition

‘The féllowing changes were made to the preliminary set
‘of requirements, Appendix C, based on: the results of analysis
of the first iteration and examination by an interested third
party.

7.1.1 PRELIMINARY REQUIREMENT 6:

"The operating system must be process oriented." This
requirement was considered to violate the guideline that all
requirements be defined at the same level of scope. This
rquifement defihes in very general terms that ‘there .are

certain basic functions that the operating system must

provide at a process level. The implications of this

requireément have been made explicit in other requirements
which are defined at a level more consistent with the remain-
ing requirements set. Therefore, thegrequiréméﬁt-Was changed
to a design philosophy and appéars as requirement 3 in the

final requirements set.

, N
N '
RN TN

LR L e e e

NI

- 92 =
7.%+2 PINAL REQUIREMENT 61
"Input/output devices are limited to card readers for

input job streams and line printers for output." I/0

dévices were limited by the désigners of the .Sample Operating

System to.card readers and printers. This was not made
explicit in the preliminary requirements set and, therefore,
is included in the final requirements set as. a design
constraint..
7.1.3 PRELIMINARY REQUIREMENT 1l:
?Usgr'dommuniCatidn-with=thé~cgetatinq'system‘is:vfa
SVC instruction." This requirement was considered to violate
the implementation independence guideline for requiremeﬁt
definition. The specification of "SVC instruction" con-
strains the viewpoint of the desiqner‘unnecessaxily.
Therefore, the requirement was re-written and appears :as
requirement 12 in the final sét: "User communication with
the operating system is: via special call".
7.1.4 PRELIMINARY REQUIREMENT 13:

"fhe supervisor process must create and delete the

.environment in which a job runs." This requirement was

awkward and unclear. Therefore, it was re-written. as
requirement 19 in the final set: "The supervisor process
must schedule jobs and prepare the job for execution".
7.1.5 PRELIMINARY REQUIREMENT 24:

"A process shall be blocked, and control released to

the traffic controller, when a timer runout trap is detected."

I ea

e d e HH G e SE and, e et S e

e A

RN
2

H

\
~ R
z':},
¢

ot

e v R =l ; : - = T, - S e LTI
R . R T e e .. w N = . ~ N, v

) T PP
: ARy

.) - R) %

o - 93 - §
This Fequiremedt states that there is a time limit
established for processes; yet, it does not explicitly state
the timé limit. Therefore, the requirement was re-written
imaking the time limit explicit, -and is presented as ;E
requirement 25 of the final set: "A prbéess«must be: blocked: QYS
tghd¢CQntroL released to the process scheduler when a time é
quaritum of 50 ms is exceeded". ;
7.1.6 PRELIMINARY REQUIREMENT 23:

"The supervisor process must reclaim -all 'system e
resources. when an error condition abnormally terminates a i%
job." This~requirement was unclear, since a user process isl \é
created for each job. Also the user may create additional. ;
processes, any one: of which may create an error which ;
terminates an entire job. Therefore, the requirement was
révdefined and is presented as requirement 29 in the finél
set: "The supervisor process must reclaim all system
resources when an «rror condition is raised by a process".

7.1:7 PRELIMINARY REQUIREMENT 41: 1

"Input/output devices .opéxate via multiplexor channel." E
This requirement violates the implement;tibn.indegendepce ?
guideline for requirement definition, and is in fact ;
redundant in the case where devices are dedicated. The Ui

{

requirement was, therefore, elimihaﬁé&m.
7.1.8 PRELIMINARY REQUIREMENT 43:

"The name of the serding process must be prefixed to a
message." This requirement violated the implementation

independence guideline for requirement definition, since the

< 94 -

-

réal i5sué is the fact that the réeceiving process must be

able to: détermine which process sent thé message. Thérefore,

the reéquirement was re-writteén and is presented as require-
ment. 53 in the findl set: "The process receiving a message

mist be able to determine the or¥iginator of the meéssage".

7,1.9 PRELIMINARY REQUIREMENT 43%

"A process synchronization mechanism must be provided."
This reguirément was. the souxce of a numbér of inconsisten-

cies in the first iteration of theé &szign problem. Upon

«closer :éxamination, it was determined that the process

synchronization mechanism has a number of specific uses.

The requirement was re-defined to clarify the use of the

process synchronization mechanism and hopefully, reduce the

incénsistencies in the ‘deésign problem. The requirement was
re-defined as follows: .

Final Requirenient 43

"A process synchronization mechanism must be provided

to 'serve as a lock on a database."

Final Reéquirement 44
A process synchronization mechanism must be provided
for the timing of :synchronization processes."

Final Requirement 45 -

"A process synchronization me¢ afiisi musi be provided
for synchronization between the send and treceiver in

message processing.”

)

pryTarTy

ety spamer ey

LR -

e s IR
spmermo— s S B
s e R ——. v B %
s . N
P

s

Final Requirement 46

RS prQQQSS»synChxoinationvmechanism must be provided ‘

to. lock a device."
7.1,10 PRELIMINARY REQUIREMENT 44:

"An interrupt méchanism must be provided."™ This
fequirement was identified as being poorly defined and
leading to inconsistenciizs in the fivst iteration of the

design problem. An intirzupt handler is provided by the

-oporating system for a number of specific interrupt

mechanisms: Therefore, this requirement was re-defined to

explicitly define each of the interrupt handlers as follows:

Final Requirement 47
"An interrupt: handler routine must be provided for I/O
interrupts."

Final Requirement 48

"An interrupt handler routine must be provided for

program interrupts.”

Final Requirement 49
"An interrupt handler must be provided for supervisor
call interrupts."

Final Requirement 50

"An interiupt handler must be provided to handle
external interrupts."”

7.1.11
The following requirements were found to be missing

from the original requirements set and, therefore, added:

YT R P S

O S R

PR o W

T
ENLS
P

R A Geeatr] T O P o T i
LT LT T

- 96 =

Fihal Réquirement 71 : : §

"The I/0 interrupt handler routiné must >rovide for
a synchronous :scHeduling of a proceéss requiring fast
processing.”

Findl Requirement 72

"The operating sSystem must include a task which loads
the 0/S into the computer and defines the processing
envirorment."

These changes were incorpoérated into the final requirements

set, and the interdependencies: between requirements were

assessed. The next section presents an analysis. of the
resulting problem structure after the application. of the

decompositidén methodology.

7.2 Analysis of the Resulting Problem Structure for the

Second Iteration

A total of seventy~two requirements were input into the

software analysis package for decomposition. ?ppendix I

-contains a copy of the output of the‘decomposition and will

be refetred to during the analysis. As before, the analysis: /
proceeded in the £0).1owing manner.

First, the input data was verified.

Second, all isolated nodes were identified. 1In this
decomposition, requirement 72, "The operating system must i
include a non-system resident task which loads the 0/S into

the computer and defines the processing environment" was

—

s e oo e _ oo

- 97 =
identified as being isolateéd. Althéugh certainly a
considération for :design, the initial program load routine
is tailored to. the final operating szstem design:. The IPL
routine may ¢all routines provided By thé operating systeém,
but the requirements for IPL are not usually consideréd in
the design of the operating -system. As before, all padded
nodes were deleted at the time.

The adjacency matrix was decomposed according to the

procedure outlined in section 2.3 and the results; .including

a heirarchical tree are presented in Appendix I. The design
requirements decomposed into eight: clusters or main sub-
problems. The heirarchical clustering method -3 was used to
generate the evaluation parameters. The evaluation para-
meters resulting from the second iteration are presented

with those from the first iteration for comparison:

First Second,
Iteration Iteration Change

Strength 1.9864 2.733 27% increase
Coupling .8674 1.32 34% increase
Measure 1.1119 1.411 20% increase
Coupling/ .

Strength .43 .48 10% increase
Average Main

Subproblem 10.16 8.125 25% decrease

Size

An examination of the evaluation parameters indicates that
all have increased from the first to second iteration, with

the coupling parameter showing the largest increase.

U R

RO

P g N T N N S e SR A
R T R R e T 4 LT sy

B e 1 . PRt aAL 3

-~ 98 =
Note also that the strength has ‘incréased as well from
the first to the seésond iteration. An increase in strength,

which is the normalized evaluadtion -of subproblem internal

coherénce, indicated that the ‘main subprobléms which have

been identified focus closely on the general subjéct of each
main. subproblém.

Thus, an increase in the strength and coupling para-

meters has resulted in ‘an increased measure for the "good-

ness" of the main subproblem decompositions. This measure

is strictly relative from the first iteration to the second

lteration. The real value of the second iteration lies in
the increased understanding of the problem»strucéure which
i3 generalized by the decomposition methodology.

The remaining sections will analyze and describe the
resulting problem structure. The final section ‘of the

chapter will present a comparison of the similarities and

differences of the .design structure implied by the first

and sezond iterations.

743 Main Subproblems

The problem structure resulting from the application of
the :decomposition methodology is presented in Figure 7.1.
The problem structure was interpreted as being composed of
the main subproblems depicted as blocks in Figure 7.1, the
subproblems, generated by a second decomposition, depicted

as circles within the parent main subproblem. The inter-

NP
N
o

ATRIWTIRE MR FRAYY &5 Mggpngmesnmeemery, T8 T P e e e
TR TR TR T RO AN AL

el

W

ot

L RAAT
PR -piy

= 99 =

Supervisor Extended Machine
Process.] . Instruction Mechanism

PR) o oy « ~

Process :Control Functions : : Process Creation

,n.mwmmma
‘Initiated
nterrupt

/“Ptocess
Scheduling

Initiated
nterrupt

Interprocess Communication : | Memory Allocation Function

Lo e

(0/5 informatiom
<« Tables

[

Message
. Facility

Device Managément ; Process Synchronization

_Functions -] Functions

FIGURE 7.1 Problém Structure Implied by
the Second Iteration of the
Decomposition Methodology

S——— s v e 4 +
A T e R ¥ S P G N T R e R T TR
83 OB L T MR SRR AT e St

T v 7y L= SR SV

dependencies among the elements of different subproblems
were generalized into interfaces which are required in the
design process between subproblems.

The eight main subprobléms have been generalized into
the following groups:

-1) Supervisor Process.

2) Extended Machine Instruction Mechanism.

3) Process Control Functions.

4) Process Creation Functions.

5) Interprocess Communication.

6) Memory Allocation Functions.

7) Device Management Functions.

8) Process Synchronization Function.

The requirement statements have been separated into these
eight main subproblemsfand are presented in Appendix J.

The following discussion will highlight the general and
specific characteristics of the design structure implied by
the decomposition methodology. ‘

7.3.1 SUPERVISOR PROCESS:

The requirements which decomposed into the supervisor
‘process main subproblem were all concerned with the genera-
tion of a multi-programming environment through the
supervisor process. The supervisor process is that process
which prepares and schedules the user jobs for execution.
The supervisor -process then consists of a number of specific

tasks which must be performed for each job entering the

O TS VIE U o O g~ o m s n e r e mameemc o e s e mo e e i e

ey

& p3 Wbt

IR

S feva a2 87 o

AT e).’
b g

-5 Z:ﬁ

SRR A BRI

RIS

Y.

ey

P e TR
I SRy AP PR P LA SN oA

e

vt dd fowmwice wr At aran wfan

Tt raboe

- lOl, -

System. AS contained in main subproblem 1, these tasks
includes

. Resource allocation: system resources must be allo=
cated to each job as it enters the system, These
resources consist of memory and devices.

. Job scheduling: the supervisor schedules each job
for execution. This system uses a very simplified
algorithm (first-come, first-served).

. Loading: the supervisdr process must load each user
job into a specific memory area.

. Characteristics of the supervisor process: the
supervisor process must be modularized and all system
processes are written in re-entrant and shared -code.

This main subproblem had the lowest individual strength
parameter for all the main -subproblems, indicating that the
requirements are not exceptionally cohesive; or conversely
that the requirements in the main subproblem cover a wider
scope.

The main subproblem did not decompose on the second
decomposition.

7.3.2 EXTENDED MACHINE INSTRUCTION MECHANISM:

The requirements in this main subproblem are all
concerned with the extended machine instruction mecasnism.
The description of the Sample Operating System in sect¢ion
3.2 included a brief explanation of the purpose of the
extended machine instructions. Basically, the extended

machine instructions were provided to enable the user to

"
)
Y
\
4

et L e e T

= 102 =

:perform certain resource management functiodns: and hardwareé-

like instructions.

This: main subproblem contains the. requiréments which
déal with the characteristics and protocols for the use of
the extended machine instructionms. ~

This main subproblem -did not decompose on. the second
‘decomposition.

7.3.3 MS 3 PROCESS CONTROL FUNCTIONS:

The requirements in the subproblem are all concerned
with the functions necessary to control processes in the
operating system. Once created, a process may be "blocked"
or ready to run. When "ready to run", a process may.ée
"running" or "waiting". This main subproblem identifies the
states of blocked, running, or waiting. This main sub-~
problem also identifies whatvgohditions may change a process
state and how resource allocation is state-dependent.

The redefinition of the interrupt handler .requirement
is clearly apparent in this main subproblem. The control of
processes in the operating system is intdrrupt-driven; that
is, once a process becomes eligible to run, its execution
is dependent upon a number of interrupts which are generated
in response to an asynchronous or an exceptional event in
the program. This main subproblem includes all »f the

interrupt handler routines and, therefore, provides for the

control of processes.

The main subproblem contained two requirements which

did not seem to fit into the classification of process

», R .
R A SRSt ot

B PUP SIS Ve

- 103+ :

control: {They arés

‘Reéquirement. 23
"5qpe;visor\:putine mist reclaim all system resources
when a job is completed."

Requitrement 29

"Supervisor routine must réclaim all resources whén an

error condition is raised."

These' requirements seem to belong in the! supervisor process
main subproblem. The supervisor process is initially
created, one per input job .stream. It performs its func-~
tions of resource allocation, scheduling, and loading as a
separate process. After all this has been done, the super-
visor process is no longer needed until the user's job énds.
It stops running and waits for a message, "success" or
"failure", signalling completion to come from the user's
program. '

According to this scheme, the supervisor is dependent
upon an interrupt signal generated by the user for successful
completion, or by the system in the way of an error, to
restrict and reclaim all theé resources of the current user.
'Therefore,_the mechanism by which the supervisor process is
signalled to restart is contained in the interrupt handler.
This is a case in which the implementation scheme of the
interrupt handler and supervisor process restart ought to be
considered simultaneously. When viewed from this ‘perspec-
tive, it makes sense that requirements 23 and 29 were

decomposed into main subproblem 3. .

S

T
e i Y2

PR R S

3
5
.

1
%

’
P AR NI

BT P SR bl T o SN LR AR S

VAT et b B

Y

Ry

. et O et o

K
Fa
H
~
i
i
2
.,

R A IR ee T e a
g o

.7 jﬁ\?mig:'

- /i/,Z'

- 104 =

‘This main subproblem decomposéd into three subproblems

during thé: second décomposition.

'7.3.4 MS 4 PROCESS :CREATION:

The réquiremerits in this hain subproblem: were all

-concerned with the protocols ‘for process creation. Initially

the operating system creates a single process for .each user's
job. ‘The user may then create additional processes. dynami-
cally during execution. Naturally the system imposes: certain
constraints and procedures upon the dynamic creation of
processes., These éqnsgrainés and procedures are the focus
of this main subproblem and .deal with:

.. When the user may create additional proéesses?

« How or by what mechanisms may these processes. by

created?
. How are user processes 'identified?
- What restrictions are imposed upon dynamically
created processes?

It is noted that dynamic creation of user prdcesses is one
of the main functions necessary for multi-programming since
the processes are time-sliced for CPU usage.

This main subproblem did not decompose any .further.
7.3.5 MS 5 INTERPROCESS COMMUNICATION:

The requirements in this main subproblem were concerned
with the tables and features provided by the operating
system for interprocess communication. The main mechanism

for interprocess communication has been previously identified

Yetat ¥

Lane e e 3

- 105 ~

is the message facility. This main subproblem contains all
the réquiréments for the message facility; as well as the
requirements fér system tables requiréd to monitor and
cont¥ol processing. Thése two groups of requirements have
béen generalized under the heading of interprocess communi-
cation since the operating .system communicates internally
with information tables and user processes communicate via
the message facility.

‘This main subproblem had the highest strength parameter
of all main subproblems, indicating that this. main sub-
problem had the greatest internal cohesiveness among require-
ments. This main subproblem decomposed. into two well-
defined subproblems in the second decompésition.

7.3.6 MS 6 MEMORY ALLOCATION FUNCTIONS:

Thé requirements in this main subproblem were all
concerned with the protocdls for memory ailoqation within
thé Sample Operating System. This main subproblem
represents a distinct changé from the first iteration in
‘which .numerous resource allocation procedures were also
contained in this main subproblem. The second iteration has
resulted in a vety well-defined main subproblem; its
strength parameter was the second ‘highest, which did not
decompose upcen the second decomposition.

7.3.7 DEVICE MANAGEMENT FUNCTIONS:
The ;equireménts in the main subproblem were all

concerned with the functions required for device management.

o

L N, Ea . Y 4
IR IRt s N e

“
By

e
3 ek .

o B

LB

s st 2 00 3

et S e ?

L~ PP T

LS
v)}_\\:}; -

e

~ 106 -
This main subproblem was virtually unchanged from the
-previpgs:i@eratioh,

The main subproblem contains the requirements which
deal with the following issues:

. Thé existence and functions .of a device management

system. (

. Procedures for requesting resources and I/0 by the

user.
This main subproblef did not decompose upon the sécond
decomposition.
7.3.8 PROCESS SYNCHRONIZATION FUNCTIONS:

The réquirements in the main subproblem are specifi-
cally concerned with the process synchronization mechanism
provided by the Sample Operating System. This main sub-
problem resulted from the redefiniticén of the global process
synchronizatidn requirement contained in the first iteration
of the decomposition process. The requirements were re-
defined and analyzed independently from each other. The
process synchronization mechanism is used extensively
throughout the Sample Operating System to provide a linked
list for the sequential locking of resources.

The existence of a main subproblem dealing exclusively
with the process synchronization mechanism indicates that
the implementation of this mechanism warrants the equiva-
lent amount of design consideration given to the other main

subproblems.

vl s e e

v res vy 15 e

&

L W

£

T TR e A YN PR

A

RIS

e

B

e

P

>

- LKA
L : o -
Y aioey SANTT A APAIR LR RS Sk

[S s

= 107 =

Thi§ main sibproblem did not décompose .any further.

7;4}.SdbpréblemsaGeneratédﬂbY¢auSecond*Deéoﬁpositidn

A second deconposition was cénducted as described in
section 7.2, and resulted in the decomposition of MS 3 and
MS 5 into three .and two Subprobléms respectively. The
following discussion will describe the resulting .sub-

problems.

. 7.4.1 MS 3 PROCESS CONTROL FUNCTIONS:

MS 3 decomposed into three subproblems as follows:
1) ~-MS 3A Process Scheduling:

All of the requirements in this subproblem were

concerned with the procedures. necessary to schedule

a process: in the Sample Operating System. This

; Sy I 1 Y T R A T (S Y i e
subprohlem was 2ifiilar Lo U8 2A Process -Creatlon

and. S¢heduling; ejcept that the functions of
process ¢creation: have now been separated into an
entire main subproblem.
2) MS 33f§ys§em-1nitia:éd Intérrupts:
The fe§u£§eﬁents in this subproblen: define the
types of intérfug;s:that are sfstem-éenerated to

control processing. These interrupts are centered
‘ ol P ol :

) around the time=slicing of CPU usage to achieve
multi-programming. The systém may also supply
inte:rqgt handler routines fo;*supe:visox calls

and for external interrupts.

T
)
i
I
S
.
"8
3
8
I
o
R
2y
X
*
:
3
3
o
ot
é“
b
W
35y
o
o
w
1
B
%

RS

O O S OUppIpY

[N
o2 e %

[P

FETUISP RN SRt

fi.

2

K
ot P

[T

T

- 108 =
3) MS 3C Process Initiated Intertupts:

In contrast to MS 3B, the redquiréments of this

'subproblém are :concerned with: +the means by which .
ugér processes may -signal théaopéfat;ngjsystem/via

interyijpts to control processing. ‘The2 user process 4

must signal completion to the &perating system so ‘
that resour¥cés may be reclaimed and other procésses
scheduled: Therefore, the subproblem is primgfily
concerned with user signalling completion to -the

operating system. As previously pointed out in 8

section 7.3.3, this subproblem also ‘contains the

A, AT T

requirements that the supervisor process be

YR hene

restricted upon completion of the user's job.
7.4.2 MAIN SUBPROBLEM 5: INTERPROCESS COMMUNICATION:.

Ms 5 decomposed into two subproblems as follows: ‘

s
IR X
9B A B o e 1 3 vt

ST

1) Ms SA Operating System Information Tablés:

K 4

The requirements in this subproblém are

concerned with the operating system's use of infor-

~ R
s e 3 A vt b BB e it

mation tables to moniter and control processing. I

The requirements deal with the existence of such

‘tables and the fact that the tables must bhe

dynamically allocated and released by the operating

s raaVe

i
system. '

2) MS 5B Message Facility:

The requirements of this subproblem are g

concerned with the existence of a message facility

R

b e e o

SN e e s iz s o e

T e Y e N e Gt P RE o A AIN Syl g 4L e VY AT AN
T B 41D e T T S ST A8 € M e U SERT L g S P IN O aI E a A A S ?vv:”?w
RN N IR o

- 105 =
for usér process c¢ommuhication. -ThHe message
facility is the primary means of user process
‘communication. and, .like informatidn tables, must. be
a dynamically allocated tablé to.-enable queuing of
messages. The requirements deal with the pro-
cedures and constraints for sending and receiving

messages.

7.5 Relationships Among the Main Subproblems:

The relationships among the main subproblems were
investigated as previously explained in section 6.4. The
linkages between main subproblems were generalized into inter-
faces between the main subproblems. It is noted that the
secpnd iteration resulted in a large number of main sub-
proﬁlems and a larger coupling parameter. Therefore, the
number of linkages between main subproblems was expected to
be much greater than in the first iteration. A comparison
was made of those subproblems actually having linkages in

the first ard second iteration.

First Iteration Second Iteration
Average number of '
linkages between 3.52 links

subproblems for 2.52 links
which linkages .)
exist subproblem subproblém
Number of existing

linkages 27 36

Although the number of subproblems having linkages is

greater in the second iteration (36 vs. 27), the average

e e i s e s o e P et st 2 vt s e e im st S e S PSR

WP,
o

- llo -

nimber -of linkages between sybprobléms is fiore than a third
less. This indicates that the interface betwéén two given
subproblems. may be more highly defined since the linkages:
will focus on a fewer number of issues. The following
discussion will attempt to make the definition of interfaces
betweeri 'subproblems. moré explicit.
7.5.1 LINKAGES BETWEEN MS 1 .SUPERVISOR PROCESS AND

MS 2 EXTENDED' MACHINE INSTRUCTION MECHANISMS:

The interface betweéen these two subproblems is formed
dué to the use of‘a*speciél call instruction to request
resources from the: supervisor.

7.5.2 MS. 1 SUPERVISOR PROCESS AND MS 3 PROCESS CONTROL
FUNCTIONS:

MS 1 .and MS 3A Process Scheduling:

The interfaces between these two subproblems con-
sists of conflicting implementation. First, the memory
and ‘device resources are allocated on a job level by
the supervisor. The processor is assigned on a process
level only when a process is runnable. Second, jobs
are scheduled strictly first-come, first-served, but
there is an I/0 fast processing ‘'scheme that enables
asynchronous scheduling of a process requiring freguent
update.

MS 1 and MS 3C Process Initiated Interrupts:

The interface between these two subgroblems consists

of the mechanism by which the superviso¥ process ig re-

Y Ol . 4
S ?5?2&?2‘.&;;: IR P

e e e
TRARPCH S Ao

s - L B e e -
Litmne B fn e s Revi2en we wiosh cad devanc s o o

ot

P L

e

T
S A T R e T AT)

Ty
3 4 LI

? ""w‘:

A

- ~ . = . L i e BN
- " e, P R I R N N A R A LR it E . . R ~ G T T
e & iy RSN

e 4%

- 111 =

started after a user job terminates. MS..3C containeéd

the Seémingly-misplacédvrequirements that the super-

visor must reclaim resources -when a job. terminates.

‘This interface makes: the association between the

supe:visér process' and user initiated job termination

explicit, and verifies the decomposition of -subproblem

Ms 3C.

7.5.3 MS 1 SUPERVISOR PROCESS AND MS 4 PROCESS CREATION
FUNCTIONS:

The intexface between these: two. subproblems consists of
the protection mechanisms employed by the supervisor process
to insure that jobs are isolated from eacih other. The
mechanism is the éreation of a single user process initially
for each job, which run& exclusively in the user's partition.
7.5.4 MS 1 SUPERVISOR~PﬁQCESS AND MS S INTERPROCESS

COMMUNICATION: '

MS 1 and MS SA Operating System Information Tables

This interface between theése two subproblems deals
with the cact that the sUpervisor process must utilize
information tables to determine what resources are free or
in use to support multi-programming.

7.5.5 MS 1 SUPERVISOR PROCESS AND MS 6 MEMORY ALLOCATION:
The interface between ‘these tyo subproblems obviously

concerns the fact that memory is a resource which must be

allocated by the supervisor process.

7.5.6 MS 1 SUPERVISOR PROCESS AND MS 7 DEVICE MANAGEMENT:

The interface between these two subproblems is of a

AT

:

o,
PO,

<
R e L 10"

EEN A T

PEY

Srh =S e en

RN W SN

SEIRTINES § B O YR Y M R N 3 s
2 L Y o

A
s e

Ao

/‘-\‘

£
AR
Y

- 112 -

dual natuire. First the device handler routine directly

supports multi=programming ‘By providing multiple job streams

from multiple sources t6' the system. Second; devices are

resources which must be allocated to jobs by the supervisor

process.

7.5.7 MS 1 SUPERVISOR PROCESS AND MS 8 PROCESS
SYNCHRONIZATION:

'The interface between these two subproblems is formed
when the supervisor process uses process synchronization
méchanism as a lock fer resource allocation.

7.5.8 MS 2 EXTENDED INSTRUCTION MECHANISM AND MS 3 PROCESS
CONTROL FUNCTIONS:

MS 2 and MS 3B System Initiated Interrupts

The interface between these two subproblems concerns

the fact that the use of extended machine instructions
generates a supervisor call interrupt. A handler
routine must be provided which interprets the interrupt
and performs the intended instruction.
MS 2 and MS 3C Process Initiated Interrupts
The user signals process completion by a special

extended machine instruction which is the interface
between these two subproblems.

7.5.9 MS 2 EXTENDED MACHINE INSTRUCTIQN MECHANISM AND

MS 4 PROCESS CREATION FUNCTIONS:

The processes are restricted in their use of extended

machine instructions; therefore, this interface is concerned

3
A

>
RPN,

S s ws e T PR S NSy

USRS IOV . TRPC I P

TR VPR PR

- 113 =
with the fact that dynamically created processes run in the
problem ‘state while extended machine instructions -are
executed in the supervisor state:
7.5.10 MS 2 EXTENDED MACHINE. INSTRUCTION MECHANISM AND
MS. 5 INTERPROCESS' COMMUNICATION:
‘MS._ 2 and MS 5B Message Facility
The message facility is .available to all processes
via extended machine instructions. The interface is con-
cerned with the use of extended machine instructions in
-support .of the message facility.)
7.5.11 MS 2' EXTENDED MACHINE INSTRUCTION MECHANISM AND
MS 8 PROCESS SYNCHRONIZATION:

The interface between these two subproblems is concerned
with the protocols for use of the process synchronization
mechanism. The synchronization mechanism is available via
extended machine instruction; but since it serves to lock
resources, it is restricted and cannot be called by user
processes.

7.5.12 MS 3 PROCESS CONTROL FUNCTIONS:
MS 3A Process Scheduling and MS 4 Process Creation
Functions
The interface between these two subprcblems is
concerned with the scheduling of dynamically created
user processes. Since the scheduling is strictly
round=-robin, a dynamically created process is scheduled

"upon creation.

ot i e e,
P i i 2 v

rte T R b T e ::-if:ka

F I

SE Wi o cans BN

Fnnmniie

o

“
P e

SO U

e R s b ks F b mn Y D

P AT S I

- 114 =~

MS. 3A and MS 5 Intérprdcess: Communication/
MS 3A and MS SA Operating Systém Information Tables.

‘The. interface between thesé two subproblems is
conceérnéd with the fact that ready process control
‘blocks may be chained together to facilitate round-
robin scheduling.
MS 3A and MS 5B Message Facility

The interface between these two ‘subproblems is
cqpcerned with use of the message facility as a means
of providing process synchronization.
MS 3A and MS 8 Process Synchronization

The interface between these two subproblems is
concerned with the use, by the operating system, of
the process synchronization mechanism to schedule or
synchronize its own system processes,
MS 3B System Initiated Interrupts and MS 7 Device

Management Functions ’

The interface between thede subproblems is the I/0

interrupt handler. The user process must request I/0
through the operating system and the I/0Q interrupt
handler is provided to service the user's request.
MS 3C Process Initiated Interrupts and MS SB Message
Facility

The interface between these two suoproblems is
concerned with the fact that when a process signals
completion, all messages waiting to be read by that

process are destroyed.

T)

g
>
19

- 115 =

MS 3C and MS 6 Memory Allccation Functions

THe interface between these two. subproblems. is
concernéd.with'mémOry reclaimation once the user job
has completed.

MS 3C and MS 7 Device Management Functions

‘The interface betwéen these two subproblems is
concerned with the fact that the device handler routine
must be terminated when a job is: terminated.

MS 3C and MS '8 Process Synchronization

The interface between these two subproblems is
concerned with the fact that all locks set by the
operating system in consideration of a particular job

must be released when that job terminates.

7.5.13 MS 4 PROCESS CREATION FUNCTIONS AND MS 5 INTER-

PROCESS COMMUNICATION FUNCTIONS:
MS ¢ and MS 5A Operating System Information Tables

The interface between thesa two subproblems is
concerned with protection mechanisms employed by the
operating system to protect dynamically created
processes. The operating system utilizes information
stored in tables to protect user processes.
MS 4 and MS 5B Message Facility

The interface between these two subprobleis consists
of the identification of user processes so that messagé

originators and destinations may be defined.

st aofoiiln motubh CHER e 2 e

AR

SR ARAIERI snttortont i st [N

et

et o

e e e e R 3 S e e A A TN pas-a R -
; .) 2 . - Cm g
T ew YRR 9 v . B ‘. PR

- 116 -
‘7.5:14 MS *, INTERPROCESS COMMUNICATION AND 'MS 6 MEMORY
2LLOCATION ¢
MS 5A Operating System. Information Tables and MS 6
Memory Allocation
The~interface*betweeh these two subproblems is
concerned with: the use of information tables to allo-
cate memory. Memory allocation is heavily dependent

upon information tables. to identify free areas and to

enforce protection rights for certain memory areas.,

MS S5A and MS: 7 Device Management Functions. ;i
The interface between these two. subproblems is : $
concerned with device management functions which require ‘Ji

dynamic system tables to monitor .and control the allo-

e -
<

cation of device resources.

oy

MS S5A and MS 8 Process Synchronization

The interface between these two subproblems is
concerned with the extensive use of process synchroni-
zation mechanism with a semaphore to serve as a lock
on a database. The counting semaphore may be used as

a prioritized list .of processes waiting for a particular

%

Sairs G vt $ 1 e b ot B et Tk STt N i

£

resource.

MS 5B Message Facility and MS 8 Process Synchronization

G

The interface between these two subprobiems is

concerned with the use of the process synchronization

AR A St

mechanism to establish an ordered queue for the message

S

facility.

BT TR ek vl B i £ L

EL
R
¥

8 40
v
L

;;’
31
&

&t bt e o e TR

= 117 <

7.5.16 M5 ¢ MEMORY ALIOCATION FUNCTIONS AND MS 7 DEVICE
 MANAGEMENT:

The: ifiterface between thése tWo subproblems is con-
cerned ‘with the use of job control language statements to
specify memory resource requirements. The. JCL statement
requirement is décgmpOsed into Ms '7; theréfore, all resource
requedts must interface with MS 7 to specify the desired
.resources.

7 .5.17 MS 6 MEMORY ALLCCATION FUNCTIONS AND MS 8 PROCESS
SYNCHRONIZATION:

The interface between these two subproblems is
concerned with the use of the process synchronization
mechanism to serve as a lock on system tables to prevent
unauthorized access or modification.

7.5.18 ™s 7 DEVICE MANAGEMENT AND MS 8 PROCESS
SYCHRONIZATION MECHANISM:

The interface between these two subproblems is’COncerned
with the use of the process synchronization mechanism to lock
devices in the device management function.

7.5.19 SUMMARY:

‘ An investigation of the interfaces between pairs of
subproblems identified the most obvious relationships among;
the main subproblems. In. 'one case, described in section
7.5.2, the examination of interfaces has verified a seemingly
misplaced decomposition of requirements. The number of

interfaces among subproblems has decreased significantly in

e [Sppp——— —,

ik,

P
fa o, Y
Aol e

gt
it

PN
e s e

Bl

o bl R T i

B Ty L5
RENS VI ST i)

NN

| SR

PP

= 199 =
the second iteration, résulting in interfaces which are more
cléarly -defined.

‘The: final section of this chaptér will compare. the.
;p%dbiggvétrqcturgscwhich weré implied by the first .and second

iterations of the decomposition methodology.

7.6 Compariscoh of the Design Structure Implied by ‘the First.

and. Second Iterations

The mathod for analyzing the similarities .and' differ-
ences- in the design structure implied by the first and second
iterations of the decomposition methodology was to compare
the subproblems which- fesulted from each iteration. Each
iteration was analyzed in isolation from the other; there-
fore, the title-of each subproblem will not reveal any more
than a general éimilarity. The compaf¥ison must include an
analysis of the functions or issues involved in each sub-
problem to determine how the nature of each subproblem has
changed from the first iteratign to the second.

The first .iteration resulted in the decomposition of
8ixty-five requirements into six main subproblems. Two_of
the main subproblems decomposed a second time;into two and
three subproblems. Therefore, the £irst iteration resulted
in a total of nine distinct subproblems for comparison. The
second iteration likewise originally resulted in a decompo-
sition of eight main subproblems, again two of which further

decomposed into two and three subproblems. Therefore, the

.
Ny

R O PR Y TR
G sty i b e SN PIRRTCHY Y HAE A

b

P

o \\z o
[RAETN | AT AP

»
a g

it e, ",
Y OV RS

e

P

Y ROV SR AL LU MO

LT e

A S

et a

- 120 -
second. iteration: resulted in éleven distinct subproblems for
comparison. ’ -
7.6.1 -GENERAL FUNCTIONAL ‘COMPARISON:

The: general ‘function of each subproblem was investigated.
'from the first iteration and compared to the function of the
subptroblem resulting from the second iteration. A pair<wise

subproblem comparison was suggested of the following form:

s

iz

W
9
2

/j

T

~ raen q»;w '-:’{d”;t)
Bdlsleasibiiheiol

Subproblems: From:
First Iteration

Supervisor Process

Device Management
Functions

Message Facility

Resource and Memory

Subproblems From-
Second Iteration

. Supervisor Process

Device Management
Functions

Message Facility

Operating System Information

Management Tables
Process Creation and Memory Allocation Functions
‘Scheduling

6. Process/Operating 6. Process Creation

System Interface
7. Process Time~Slicing 7. Process Scheduling

8. Extended Machine Instruc-

8. Multi-programming
tion Mechanism

Support Functions
‘9, System Initiated Interrupt

10. Process Synchronization
Mechanism

11l. User Initiated Interrupts

7.6.2 COMPARISON OF SPECIFIC SUBPROBLEM FUNCTIONS:

Supervisor Process: Both iterations identified the need

for a supervisor process, which prepares and schedules jobs

AT~ e
N L N R S o e s, x L.
v S et DPY O SRR L IS T X P R A

PPN T TG0 S A D SONIS VI S, 3 S,

e

e N S P e eI,
3N S LB Dl Ferias S e

IS ST

N

;B
i

aE

pe

S g o

T
sl S

N e e

[
A
)

£or execution.

= 121 =

The supervisor process in the -second

iteration is' more well-definéd sihce it incorpordteées many
of theA:equirements/whiéhkpreviouSIY~hgd‘been~decompd§eé
into the multi-programming support subproblem. The require-
ments which shifted deal specifically with the functions of
the supervisor process in the support of multi-programming.

Device management functions: The subproblems generated

for the device management functions were nearly identical

for the first and second iterations. The subproblem
resulting from the second iteration included the requirement
for job control language statements. In the previous
iteration this requirement had been contained in the resource

and memory allocation function subproblem.

Message facilityvy subproblems: The subproblems generated

for the message facility were identical from the first to

the second iteration. However, in the first iteration the

message facility constituted an entire main subproblem;
whereas in the second iteration; it was a subproblem

génerated after a second decomposition.

Resource and memory management functions and operating

system: information tables and memory allocation functions:.

‘fhe first iteration of the design requirements generated
‘a main subproblem which was concerned with the allocation of
resources and specifically memory by the operating system.
This main subproblem was better defined in the second

iteration; in that two subproblems were generated which

s — e e ¢ Y

N s i, SR a A

Wt i

P yeamuat

B n . T

ittt B

Tl e SR s v e

S il

YTy

Lk

~ 122 -

'separated the éggcﬁioné of theé ‘previous main subproblem.
Memory .allocation subproblem, in the second iteration,'is'
specifically concerned with these requirements for memory.
The -operating system: information tables subproblem deals
with the protocols and information requirements which had
been associated with +the gefneral resource managément
functions of the first iteration. In addition, the mechanics
of resource allocation were decomposed into the .supervisor
process subproblem of the second iteration which has resulted
in more well-~defined subproblems.

Process creation and scheduling functions and process

creation and process scheduling functions: The single sub-

problém, Process Creation and Scheduling Functions, of the
first iteration, was decomposed into one main subproblem,
Process Creation and one subproblem, Process Scheduling
Functions in the second iteration. The requirements
involved in both iterations are identical. The functional
separation achieved in the second iteration has resulted in
more clearly defined subproblems.

Process/operating system interface and extended machine

instruction mechanism: The requirements ceontained in each

of Qhese two subproblems are nearly identical from the

first to the second iteration. However, in the first
iteration, the process/operating system interface was a sub-
problem; whereas in the second iteration, the extended
machine instruction mechanisms constituted an éntire main

subproblem.

> %

o4

st vt} Mz 4 S i s i e

- 123 -

Process time-slicing and system initiated interrupts:

The requirements for process time-slicing decomposed in the
first iteration into a single subproblem entitled "Process
'time¥51;cingﬁ. In the second iteration, ‘the definition of
the interrupt handler requirement had beer; considerably
expanded. One result was the definition of a subproblem
dealing with system initiated interrupts. The main focus of
system initiated interrupt handler was with time runout
however, it also included the requirements external and 1I/0

interrupt handler roufines as well.

Multi-programming support functions and process sychron-

ization mechanism: The multi-programming .support function

main subproblem, generated in the first iteration was
eliminated in the second iteration, being replaced by the
process synchronization mechanism main :subproblem. The
multi-prqgfamming support functions included many functions
which ‘belong to the superyisor process. ‘In fact, it was
previously argued that the supervisor process main subproblem
could have been considered a subset of the multi-programming
‘main subproblem. In the second iteration, all of the
requirements representing supervisor process functions have
been decomposed into that main subproblem.

The process synchronization mechanism requirement was
re~defined from the first to the second iteration. Since
this mechanism provides basic multi-programming support, it

had decomposed into the multi-programming support main sub-

Y
:
-
>y
:
X
v
H
:
.4
=

A

PR

LA

- 124 -
problem in the first iteration. After the redefinition in
the second jtération; the process synchronization mechanism
»had'derﬁposed\intq a distinct and separaté main subproblein.

User initiated interrupts: The redefinition of the

interrupt handler routine requirements from the first to

the second iteration resulted 'in. the decémpositi¢n of a sub-
problem dealing with user initiateé interrupt handler. Since
the main focus of this subproblem involves the user signaling
completion of a job, it had no similar subproblem counter-

part from the first iteration.

7.7 Summary

The comparison of the problem structure implied by the

first and second iterations yields the fol}owing results:

. The second decomposition resulted in a greater number
of subproblems.

. The subproblems resulting from the second decomposi-
tion weré more well-defined than those resulting from
the first iteration.

. The changes in subproblems from the first iteration to
the second were inituitive and seemed to result in a
better problem structure.

. The interfaces between subproblems in the second iter-
ation were also more clearly defined.

The next chapter will analyze the implications of the second
iteration problem structure on the design of the Sample

Operating System.

A S TN EM IS, L0 TR O Yo

Ao s

a5tk

ERA

R TR

e,

LI ko

JEA AT

i e nnedlw

[ST

o

=
N e
T T e

- —— T T — e T A S o R T
= ey e T L P e % o o -
S N BT I R S A R S IR S B, 2 A

T S AR
T r T S TR e Y SN B T
LR e At ne s

- 125 -
CHAPTER VIII

‘IMPLICATIONS OF THE DECOMPOSITION PROCESS
FOR THE DESIGN OF THE SAMPLE OPERATING SYSTEM

The motivation for applying the decomposition method-
ology was to generate a framework upon the design rgquire-
ments of the Sample Operating System to -provide insight and
understanding of thée relationships among the system
requirements. The framework resulted in the identification
of subproblems of system requirements and the establishment
of relationships between pairs of subproblems. The frame-
work then constitutes a better basis for the subsequent
detailed design stage; than the original disjoint set of
requirements. Better in the sense that a design team now
has a framework; i.e., design subproblems, in which
alternative implementation schemes may, be thoroughly
investigated.

The prupose of this chapter is to examine the sub
problems, which resulted from the second iteration of the
decomposition methodology, from the perspective of the
completed Sample Operating System to determine if the:
completed design is verified by the results cf the decompo-
sition methodology. The verification procedure was first.
to determine if the Sample Operatiny System was designed in
a manner consistent with the intuitive results of the
decomposition methodology by a comparison of the specific

functicns identified for the heirarchically structured Sample

R o
——

To, Yo p

RSN P RS W R D S

ot

T
PRI VI
.'wCLA"{fN

< N L
N st I B L s g e o R PRI

Ak xan g o b oL

v e

[R

@

- 126+

Operating Systefi with the functions .genéralized fo¥ -each
subproblem by the decompositior: méthodology. The procedure
attempted to determire if‘tﬂé decomposition methodology
indeed provided a framéwork for -design; set was. -sufficiently
unconstraining so thiat a designer was free to investigate
alterhative implementations and still arrive at the £inal
Sample Operating System design as it. exists.

Since the -design process for the Sample Operating
System,is not .documented in almanner that would elucidate
the decisions made 'by the designers in the.early stages of
the design process, a description of the final system was,
therefore, used extensively ‘as the only documentation aid
for thé system.

‘The second part of the vérification procedure was to
identify inconsistencies, non-intuitive design features, or
contentions that were made obvious through the application

of the decomposition methodology.

8.1 Design Overview of the Sample Operating System

The description of the Sample Operating System by
Madnick and Donovan included a design overview, which closely
represented the major design decisions. The design overview
is presented to highlight both the design philosophy and the
intant of the system designers.

"The design of the Sample Operating System follows

closely the framework presented in (Fig. 8.1).28"

‘28

Madnick and Donovan, p.19.

I NI RN,
TONIEA G~ & TN P 2

SUIACIRC PRy

= 127 =

"We build our concept of an operating system around
a process. We récognize that there are certain
requirements: necessary to support processes. A process
in the proper environment could c¢all certain basic
functions. Unfortunately, most present-day hardware
does not provide these basic functions."

"Phus, our first design task is to build basic
functions (extended machine for process -support). These.
comprise the nucleus or Kernel of the operating system.
Examples of these basic functions are the P-V operations,
basic multiprocessing support, and traffic controlling.
The reader can think of these software functions as
"being executed in the same way as hardware instructions.

"It is best to think of the Kernel as being an
extended machine tha% censigts of a number of ‘extended
instructions. In this implementation, the extended
instructions are accomplished;bqueans of the supervisor
‘call instruction....."

"....Certain operating system functions can be
provided in the form of special System processes rather
than system primitives. In this sampie operating
system, there aré several such processes, including the
supervisor processes. (job stream handlers) and the
device handler processes........The hierarchical
construction of the Kernel is such that each successive

level, from the bottom up, depends only on the

—~

- 128 -

. existénce of those: levels beélow it, and not on those
above it. This approach has' the advantage of pedago-
gical :clarity, offers debugging ease, and may be
relevant to the development of new theory."29

From Figure 8.1 one may discern five levels and layers (or

modules) of the Sample Operating System.

’:Process Management, lower module (lowest)

Levels - Memory Management Module
~Process Management, upper module
Device Management Module
Layers z[

Supervisor Process Module (highest)

The functions: of process manégement have been split
into a lower module and an upper module because certain
functions of process management (upper module) depend upon
memory :management functions, but memory management itself
depends on certain process: management routines that must be
in a module below memory management. Clearly this step
increases the pedagogical clarity of operating system. It

is also noted that the Sample Operating System has no

spoeling process nor information management ({(file) system.

An examination was conducted of the .functions of each
level and layer in the heirarchical operating system
structure of the Sample Operating System to determine if
they correspond to the functions' of the subproblems identi-=

fied in the decomposition methodology.

29Madnick and Donovan, pp.383-385.

X e i i S apt o e i

5 4t

ae Forta o Dved T S a ke

o W et e

3085]
T Supervisor Process| :
/. (job scheduler).
P s naan v
/N AN

Process 1

Level 4
Level 3
’Leyél‘z
Level 1

Bare
machine

rocessor managemeny

emory management

Processor management upper
module

Device management
Information management

FIGURE 8.1 Heirarchical Design Structure of the Sample
Operating System

S
LT

B ca i Tavl s fwn ,

CH e e ¥ s e

el st e e A ¥

PRSP N

PN s awsal o he s

I
T, A T
SRR 2 .

-]_3(0’ -

C:? 8.2 Functional Comparison of the Levels and lLayers of the

Sample Operating System with the 'Subproblems Génerated

Byvthe“pecomppsitioq Methodology
'8.2.1 PROCESS MANAGEMENT (LOWER) MODULE COMPARED WITH
PROCESS CONTROL AND PROCESS SYNCHRONIZATION MECHANISM
SUBPROBLEMS ;
The functional description of the process management
(Lower) module is as follows:

The module schedules and runs processes that are
eligible to run and provides the basic primitives for
synchronization of processes.

These functions are wholly contained in the two main sub-

‘problems offProéess Control and Process Synchronization

Pt

mechanism. The process control main subproblem as described
in section 7.3.3 is concerned with the functions necessary
to control all processes in the operating system. This

main subproblem deccmposed into three subproblems; Specifi-

cally, process scheduling, system initiated interrupt

handler, and user in:tiated interrupt handler. The process
scheduler is concerned with the procedure for scheduling
eligible processes and corresponds to the process scheduler
of the Sample Operating System. The system and user

o initiated. interrupt handlers define the functions necessary
for process multiplexing by the operating system and the
user. These functions essentially distinguish bétween

(| eligible and ineligible processes.

. . _ B
T AR AL W ATy

RN
5 uvongin 2 e SR

g

R

5

PeESE ;1;
SEPREE NN 4

PRV

+

,,h,,f,_.,,‘,”
G o A

P s ©

e v e o evien v na B s

i

PR

e ——

@

- 131 =

‘The sécond~main.subpxoblem included in the«compa§iébn
is the process. synchronization mechanism. As described in
section 7.3.8 this main .subproblem is concernéd with the
specific function of the synchronization mechanism and.
‘directly corresponds with the "basic primitives. for :synchro-
nization of processes" «described in the process management
{lower) module of the Sample Operating System.

8.2.2 MEMORY MANAGEME;NT MODULE COMPARED WITH THE MEMORY
ALLOCATION MAIN SUBPROBLEM AND. OPERATING SYSTEM
INFORMATION TABLES SUBPROBLEM:

The functional description of the memory management
‘module is as follows:

This module performs the operations necessary for
the dynamic allocation and freeing of memory for:
l a) job allocation.
b) operating system dynamic allocation.

The allocation functions defined for job and system needs

correspond to the functions described in the memory

allocation main subproblem and operating system information
table subproblem as described in section 7.3.6 was concerned
with the protocols for memory allocation and directly
correspond to the functional description of the memory
management module for job partitionms.

The operating system information table subproblem was
decomposed from the interprocess communication main subprob-

lem. As described in section 7.4.2 this subproblem is

SIS SR W

B g Y ST SO

[2 U

k!

N

=132 -

-doncerried with the use of information tables to monitdr and
control processing and .corresponds to- the memérY‘ganagement
module alldcation functions for memory for operating system
dynamic allocation, It isnoted that the decomposition
‘methoddlogy defined the functions of operating system
dynamic allocatién of memory for information tables as a
subproblem of interprocess communication; whereas the
designers of the Sample Operating System treated the func-
tions as a subproblem of memory management. The conceptual

distinction is as follows:

a) Decomposition of the information table requirements

e

as a subproblem of interprocess communication ‘Q
resulted from an assessment of "What" was the
function of information table? The fungiion is,
of course, to monitor and control preccessing by
communicating the status of resources thru tables
shared among the processes of the operating system.

b) The treatment ?f the dynamic allocation of memory
for informaticn -tables (operating system dynamic
allocation) resulted from an assessmernt -of how is
ghe information. table requirement to be implemented?
Since the function requires a significant amount of
memory allocation, it was considered a subproblem
of the memory management module.

The interdependencies among requirements were assessed

in an implementation independent environment. The applica- 4

e e, i e e s e e B e e e

= 133 =

tidn. of the decomposition methodology, a framework (i.e.,
7upr0bléms) in which alternative implementation schemes
may ‘be thoroughly investiaged. For the final design, the
information table subproblem was combinéd with the memory
allocation subproblem to form the memory management module
of the:Sample Operating System.

This comparison raiséd the following issue:

If a main subproblem decomposes upon the second
decomposition should one assess the main subproblem ds com-
posed of several subproblems or should one assess the
subproblems as independent design problems at the same
level as main subproblems?

The purpose. of decomposition methodology is to provide
a framework of subproblems in which the designer is free to
optimize the subproblem by investigating alternative
implementation schemes. The framework is meant to provide
a structure for the designer, but not to impose additional
constraints upon the designer's freedom. Since the assess-
ment of subproblems as independent design problems offered
more flexibility to the designer, one should, therefore,

. assess subproblems resulting from a second decomposition at
the same level as main subproblems. In terms of the
previous -comparison, treating the operating system informa-
tion table subproblem within the structure of the inter-
process communication main subproblem would have added a

constraint upon the system designer.

..»4 , S . v‘ -

i R A e Y TR

¢

s e 7A___....wm"w,\-fwrmv-w-ﬁ
e —

e vy o - T Rt T TR RT R Ty S T R
- LTy e Hr ¥ T 13 G Tty Swin § g0 e TP © MY R oA R A R e s I SRS
T R T e A A G - AT P R O L SN Y R T IRET
TRl LY RREST PR N T 5

L wighy .
s

P

'8.2,3 PROCESS MANAGEMENT -(UPPER) MODULE COMPARED WITH THE
PROCESS.'CREATION SUBPROBLEM .AND THE MESSAGE FACILITY
SUBPROBLEM:

The functional description of ‘the process management

(upper) module is as follows:

"The modulé provides routines for:
a) the control of processes; specifically, -creation
and -deletion.
b) interprocess communication with buffered
messages, "0 |

These functions correspond to the functions of the

process creation subproblem and the message facility sub-

problem. The process creation subproblem, as described in
section 7.3+.4, is concerned with the protocols for process
creation, and correspond. directly with the functions of this
operating system module.

The second subproblem included in this comparison is
the message facility subproblem which was decomposed. from
the interprocess communication main subproblem. For reasons
stated in the last section, the message facility subproblem
was treated .as an independent design problem at the level
of a main subproblem. Its functions, as described in
section 7.4.2, are concerned with the existence and use of
a message facility by all process for interprocess communi-
cation. These functions correspond with the functions of

"interprocess communication with buffered messages" as
30

Madnick and Donovan; p.388.

LRV PPN |

4

%

2L

K

4

R

2

%

r;"g

. E
Ry
ko Vx‘

X
~

- 135 =

specified’ in the process management (upper) module.
8.2:4 DEVICE' MANAGEMENT MODULE COMPARED- WITH THE DEVICE
MANAGEMENT FUNCTION SUBPROBLEM:
The functional description 'of the device management
module is as follows:
"This module provides the routines necessary tp‘
issue the appropriate input/output commands to
extended devices. A special portion of the device
management routine*handles,interrupts."31
These functions correspond to the functions contained in
‘the device management function subproblem. As described in
section 7.3.7, this subproblem is. concerned with the
functions required for device management, specifically; the
procedures for requesting resources and I/0 by the user.
8.2.5 SUPERVISOR PROCESS. MODULE COMPARED WITH THE
SUPERVISOR PROCESS MAIN SUBPROBLEM:

As implied by the title of this section, both the
modulée and the main subproblem are nearly identical.

The functional description of the supervisor process
module is as follows:

"This module serves as the job scheduler. It can
use all the functions provided by the previous modules
to create an interface for the process of user jobs."32

These functions correspond exactly with the functions of the

élMadnick and Donovan, p.389.
521 adnick and Donovan, p.389.

i AT 3 e S S P TOLY R ATRANST ot S e - B - Lt
e g2 rirs e s D T T SRR it ol e it i et X ot

o

o

b N il VS)
aron B RBAA dr sor T 1 e byt B e

¢

o2

S .
B AMCDY b o hm o o St

e e

BT

- -43;.':. e

PN

B e g T

RS

Tl PR L 0, P e S
A AN

g

ATt
B

S Nms

st AN

- 136 =

‘supérvisor prdceéss main ‘subproblém. As déscribed in section

7.3.1, the supervisor process is concerneéd with the
generation of a multi-progrfimming environment £or user
processes: It is. that process which prepares and schedules
user ‘jobs for execution.
8,26 SUPERVISCR ‘CALL HANDLER COMPARED' WITH THE EXTENDED
‘MACHINE INSTRUCTION MECHANISM MAIN. SUBPROBLEM:
Madnick and Donovan describe an additional group of
routines which are not reflected in the heirarchical copera-
ting system structure as follows:

"Several routines don't conveniently fit our
heirarchical level structure. The most notable case
is the SVC handler used to activate the extended
machine instructions and transfer between levels."

The requirements for these routines are wholly contained in
the functional. description of the extended machine instruc-

tion mechanism main subproblem. As described in section

7.3.2, the main subproblem is concerned with the character-

istics and protocols for the use of the extended machine
instructions. Since these instructions may be called by any
level or layer of the operating system, they cannot be
generalized into the heirarchical system structure.
8.2.7 SUMMARY OF THE FUNCTIONAL COMPARISON:

The comparison of the functions of the modules for the
Sample Operating System with the functional description of

the requirements contained in each design subproblem defined

A

- 137 =

R .
s N e

FRIEF | SV AN

by the description methodology has yiélded several

ingtruction insights:

ey

. The rationale for treating design subproblems,
rgSulting~ﬁrom‘theuseéondudqéompoSition of 4 main.

subproblém, as independent design probléms at the.

- KL oy v

level of main subproblems was developed. Since

independent design problems<pf6v1de a framework,

TN

yet impose fewer constraints upon the designer,
the design process sliould deal with subproblems
as independent design problems to be optimized.
. The depompoéition methodology identified a greater
number -0f subproblems, and the subproblems were
internally more defined, than the levels and lavers
of the final operating system design. For instance,
the process management (lower) module has three
distinct functions: ‘
a) schedules and run processes;
b) defines eligible processes;
¢) provides basic system primitives.

The decomposition methodology identified four sub~

problems to correspond with the function process

management (lower) module; specifically: ;
a) process scheduling function;

C b) system initiated interrupt handler;

c) user initiated interrupt handier;

- d) process synchronization mechanism.

. N . iy rny TR ST - =T~

- 138 -

‘The designer now has at his dispésal a4 framework in
which the functions of each subproblém aré clearly defined,
internally. 'The desidner next investigates alternative
implementation schemes to satisfy the' requirements of each
Subproblem. In addition, the interfaces betweeén pairs of
:subproblems are clearly defined so that, in the cage of
system and user initiated interrupt handler, common functions
or processing may enable concurrent implementation schemes
for subproblemns so closely related.

Therefore, the designer is presented with a clearly
defined framework of subproblems which he ‘may choose to
agglomerate into larger modules to satisfy the design
problenm.

The next section will investigate some of the ‘inconsis-<

tencies identified by the decomposition methodology.

8.3 Inconsistencies Identified in the Comparison of the

Sample Operating System and the Decomposition

:‘Methodology

The inconsistencies identified in the comparison of the
Sample Operation System and the decomposition methoﬁology
were of two types. First, the final design of the Sample
Operating System contained certain features that were not
reflected in the results of the decomposition methodology.
Second, process of requirements definition, interdependency

‘assessment, and application of the decomposition methodology

,

P

Y -

RS s

e
HWe % e

PPy
A

2};{‘ 4

i U
o

. [
PSR GUTA. y

s -
L e v

3]

K

e E
e RTINS e

i i T e M A I s e

2T
(U

- 139 -

identified unresolved contentions or conflicts in the

Sample Operating System.

8:3.1 FEATURES OF THE FINAL DESIGN OF THE SAMPLE OPERATING
SYSTEM. NOT' REFLECTED. IN THE RESULTS OF THE
DECOMPOSITION: METHODOLOGY :

The main feature not captured in the decomposition
methodology was the heirarchical nature. of the Sample
Operating System. This is significant because the heirarchi-
cal design incorporates a strictly limited interfacing
protocol between the levels: and layers of the Sample Oper-
ating System in. which each successive level from the bottom
up, depends only on the existence of those levels below it.

It can be argued that the heirarchical construction
technique was a design decision made in a later stage of the
design process since it satisfies the objective of the
design; that is, the'Zodular and heirarchically structured
design is pedagogically effective, Yet, the interface

protocols are very restricting and the separation of the

process management module into an upper and lower module

were dictated by existence dependence of upper levels upon
lower levels. Therefore, an investigation was made of the
linkages between subproblems to determine if the heirarchical
nature of the Sample Operating System could be inferred

"post facto" from the facilities available in thée decymposi-
tion methodology.

The results of the prévious section were used to

PoRVRIEH 72X VA S

B3 e el MR B e S xuen

PR,

PRRTEN

e e Lo we bt

o
u

- 140 = 1

) i

identify when subproblems and modules were equivalent: 3§

| {i

Final .Design Decoriposition Methodology fé

Process ‘Management (lower) Process Scheduling. i

Module » R ’ As

‘System Initiated Interrupt !

‘Handler ;

User Initiated Interrupt ﬁ

Handler ;

Process Synchronization :

Mechanism E

Memory Management Module Memory Allocation =

Operating System Information |

‘Tables !

:

Process Management (upper) Process Creation ‘

Module _ :

Message Facility :

Device Management Module Device Management Functions ;

Supervisor Process. Module Supervisor Process -

Sapervisor Call Handler Extended Machine Instruction g

Mechanism :

Since theé linkages between subproblems are assessed in |

an undirected manner, and are symmetric, the actual direction |

of the linkages could not be determined. Therefore, no :

statement could be made in regard to an "uppér" module {

calling a "lower" module. i

A comparisonwas made of the raw number of linkages

Lj between subproblems. The tabulation of this comparison is :
: presented in Appendix K. It was expected that some sort of f
. trend might be established with the number of linkages, {
/ .

- 141 -

cumulated £irst by subproblem, second by module, Specifi-
cally, $ince thé process management (lower) module is the
closest. to the bare machine, it must be used frequently and,
therefore, one would eXpect the number of linkages to it to
be ‘relatively large. Conversely, the device management
module is-.a layer of the operating system; therefore, its
level of interfacing in raw numbers, should be considerably
less ‘than the previous example.

.The results qf~the;c9mparison are as follows:

. ‘The average number of linkages per subproblem equalled

1:6‘0‘18'0

. Process management (lower) module had the greatest
number of linkages, yet no trend could be established.
That is, the number of linkages exhibited no signi-
ficant trend as one approached closer to the bare
machine.

. The fact that the process management (lower) module
had a gréater number of linkages was due more to the

fact that it was composed of four subproblems, rather

than by any existence dependency.
Therefore, the decomposition methodology gave no inferrence
of a heirarchically structured operating system.

8.3.2 CONTENTIONS IDENTIFIED DURING THE APPLICATION OF THE

. e N e
- . ;S LT e
Btvan i oo ak ninisin Nothn il erthani i SN P Y

DECOMPOSITION METHODOLOGY:
During the process of requirement definition, inter-

dependency assessment, and application of decomposition

T L A R LY A i A R = A
IR AT e L. - I

- 142' -

methodology, numerous uaresolved issues were discovered
which: could lead to contentions or conflicts during imple-
mentations. These issues were involved with the implementa-
tion of system requirements and were the résult of the
application of worst case usage of the system to. determine
if the réquirements set was complete. The unresolved
contentions were as follows:

.. The operating system must have some finite limit in

the number of jobs that it will accept before a

critical resource is fully allocated. The limit could o

involve memory, dedicated devices, or IBM System/360 1

protection keys. The limit was not established in T
(:) tﬁe requirements, nor was any priority specified to i

’ .determine which is the critical resource.
. The message requirement number 56 states: "Any

number of messages, for a given proceés, may be queued

while waiting to be read by the process." Since the

memory area for buffered messages is dynamically 1

allocated, it is conceivable that one process could

do nothing but write messages to itself. Carried to

i i

an extreme all of memory could be consumed by the

o

TR

process in which event the system would become

e

BRER N

deadlocked:. Therefore, some finite limit should be
placed on the number of messages which a ‘process may
have enqueued before it is forced to read the messages.

3 . Requirement 24 states: "Ready processes are scheduled

- 143 -

in simple round-robin fashion by thé process
scheduler." The process scheduler checks an informa-
tion table to»determine if a given process is ready;
if it is not ready, the process schedulér chécks the
next process 'in a sequential chéinw It is conceivable
that all processes in the system may become blocked
at the same time. Therefore, the process scheduling
function must include some mechanism to. first deter-
mine that all processes are blocked and second, to
attempt to resolve the situation.

The preceeding contentions became obvious during the
decomposition methodology. The lack of further contentions
was not meant to imply that no‘further contentions exist in
the Sample Operating System. The decomposition methodology
contained no rigorous methodology to determine if a complete

and consistent set of requirements had been defined.

8.4 Summary

The final design of the Sample Operating System was
verified by the results of the second iteration of decompo-
sition methodology. The decomposition methodology identified
eleven well-defined subproblems which corresponded in a
consistent manner with the functions of the six levels and
layers and SVC instructions handler of the final design of
the Sample Operating System.

The decomposition methodology did not infer the heir-

it 2 e a0 e N

PN A LN

P IR U S

R S R A O R 4 > o S St ok o o G L o o - -
e e —_— - - T Ak e A A e e
Ty RN
s

~ 144 =

archical structure of the final design. Howeveér, the

S
A

identification of linkage$ between pairs of subproblems 1%

. =

explicitly defined the interfaces which wére incorporated iy
into: the modules of the final design. &
The procedures invoiveg in the decompositionmethodologys 3

that is, requirements definition, interdependency assessment (é
and decomposition méthodology, include no rigorous attempt ;
to ensure that a complete sét of requirements was defined
for the Sample Operating :System. _

The next chapter will present recommendations for
improvements. of the methodology based upon the analysis of o

the Sample Operating System.

e OB

smehe ML A W

Do

.

L4

S

I3

.

|

CHSURIEN [
IR RN N

- 145 -
CHAPTER .IX
‘CONCLUDING STATEMENTS CONCERNING THE
APPLICABILITY OF THE DECOMPOSITION. METHODOLOGY
TO THE DESIGN PROCESS AND RECOMMENDATIONS
FOR IMPROVEMENT N

The purposé of this Chapter is to take a retrospective
view of the décomposition methodology applied to the Sample
Operating System. Baséd on the experience, conclusions
will be discussed concernings the applicability of the

decomposition methodology to the design. process..

9.1 Objectives of the Methodology

The objective of the application of the decomposition 1
methodology was to support the designer in the architectural
design phase by providing the designer with a framework in
which the design problem can ke studied in a well=defined
and organized fashion. The architectural design phase
.consists of a well-structured series of activities that the

design ‘engineer should perform in order to achieve a better

understanding of the design problems at hand, as well as to

i i

avoid implicit and unwarranged preconceptions that can bias

the eventual design significantly. The decomposition
methodnlogy supports the architectural design phase yy
clustering the global system requirements into subproblems:

The methodology then does not purport to provide a best

answer, since the techniques are satisfying rather than ?

optimizing.

SV e B B T Y S S T R R R R e

. N J N T L R
e een s e g e e T T ANE SRS N AR SO T IR O
oy Ty At g AT B T S S D e LT LN

TRl S R e = —— e ?

T g PN IS e D T I
AP S -

= \146 -

-expanded to include the following stages:

- Requirements definition stage;

. Interdependency Assessment ‘Stage;

. Application of ‘the Décomposition Methodology Developed.

by Andreu.

The - methodology -supports the design process by
decomposing system requirements into subproblems. The sub-
problem concept narrows the scope of consideration of the
design engineer to more specific well-defined areas of
‘concern: But as pointed out by Leopold, Svendsen, and
Kioehn,33 subproblems cfeate more levels of management and

organizations produce designs which are copies of the

communication structure of the organization. The: result can

be that the solution to the design problem becomes a series.

of compromises based on political expediency rather than

on technical objectivity. Aany methodology must provide for

better communication based on technical objectivity to

satisfy the design problem.

The decomposition methodology facilitates consideration

and discussion of the system requirements, system objectives

and constraints early in the design process. In fact, the.

methodology forces the user to conduct a pair-wise assess-

ment of the interdependencies of all requirements.
osﬁeuven‘LeopoZd, Edward C. Svendsen, and Harvey Kloehn,
"Warship Design/Combat Subsystem Integration - 4 Complex

Problem, Unnecessarily Ovevcomplicated", Naval Engincers
Journal (August 1972) p.44.

This is

b

e i Saksias

P

et Aaton e S a2 m

-

RN, /218

significant in two waysi

- An exhdustive: pair-wise assessmént of interdependen-
cies éxecuted in a top-down manner, forces: one to
think in ‘terms of conceptual models freeing the
designer of his dependencies. upon tradition-bound
designs.

. The decomposition methodology causes the elimination
of prevalent misconception or traditional design
practices by displaying the complex interrelation-
ships which heretofore were unavailable to the
devigner.

The usefulness of the methodology was verified by the results
of the application to the design of the‘Sample~Ope;§ting
System as stated in section 8.4. Yet:-the experience gained
in the application of the methodology suggested improvem.:nts
to all three phases of ‘this methodology toc improve both its
effectiveness and to increase the scope of the applicability.
The‘nextméection of the chapter will present those recommend-

atidéns for improvement.

9.2 Recommendations for.Improvement

9.2.1 SUGGESTIONS TO IMPROVE COMMUNICATION:

The decomposition methodology is but a small supporting
tool in the.overall design process; specifically, in the
architectural design phase. The most time-consuming stages

of the methodology were the requirements definition stage

E‘.&» et e

- 148 -

reguired in edch stage weré hand-written and the analysis
wag performed off-line. The lack .of any text facility pre-=
cluded an on-line assessment of design probléhs, ‘Thé ‘time
required to perform the stégés of methodology could be
reduced, and the,methodOIOgy'imprpved if the three stages
¢ould be made completely interactive by the addition of a
facility for limited documentation statements. The specific
documentation statements needed are defined in the supplement
sections.

9.2.2 REQUIREMENTS DEFINITION:

The problems associated with generating well-defined.
requirements statements, even for an existing system, are
well-known. This stage of ‘the decomposition methodology
represented the greatest expenditure of time andwénergy for
this thesis. As described in section 2.1, the functional
'specification phase of the design process is receiving
considerable attention from researchers. Sid HuffsAK‘has
described a template format for requirements definition which
recognizes six distinct statements built upon three basic
language constructs. The :basic constraints consist of:

objects: which are items or activities such as item -

memory activity - allocated.
modifiers: which are strings of Engiish adjectives that

describe the obiect.

4 . , .
"Sidney Buff, "An Approach to Constructing Functional
Requivement Statements for Preliminary System Design''; unpub-
lished report, MIT Sloan School, April, 1978, vp.6-7.

IRy ¢ o

- 5
PR a.s».v—lu@,‘hmux PRI

e

<5

2 T
SATPITR.: - N R N

el ml b

-

b i et Eed

- 149 -

Impératives: which indicate the naturé of rélationshipss

Only'two-imperétivés are recognized =~

can: implying conditional capability. 3

will: must be fulfilled. | %

These constructs. are used to generate: Six. templates which are :LE
‘gensric types of requirement ‘statements. They consist of the ‘ﬁé
following: Yéé
Properties: .a feature of the system. >
Treatments: an operation; that is done to an object. t:%
Timing 5
Relationship: objects may be temporarily related. t;g
Order , 4
Statements: oxder relation, such as, equal to. é
Measure: ‘consisting of a parameter and a unit. C%

For example, ‘é
lMemory l lwiil beIF;locatedl | in 2K blocksl é
item object imp activity object modifier ;
The template format is a useful structuring tool for g
requirements definition which may serve to identify ambi- %
guities or errors. The primary benefits of the template E
format to the decomposition methodology are: é
. It would provide a concise, well-defined requirements ~;€
statement which could be generated and stored on-line 3&

using a menu of constructs. '

. It would be useful for determining interrelationships

R

o

- 150 -
since: the statements: consist of wéll-defined key
‘words.

+ Completeness of reQuirementshset gcui&»be verified
through the use of simple algorithms which wéuld,
check for thé existence of cdpabilities clearly
defined in the property statements.

9.2.3 ASSESSMENT METHODOLOGY:

The greatest wedkness of the decomposition 'méthodology
is the fact. that the binary assessment procedure is: simplis-
tic and; therefore, -constraining: The. binary assessment
procedure does not allow any sort of sensitivity analysis or
weighting of the interdependencies and does not allow for
the representation or solution of an objective function.

The lack of an ability to represent an objective fune=
tion resulted in the separation of the déSIgn4phi;Qsophy and
constraint statements from the requirements set that was
analyzed for interdependencies. All that one .could say was
that the design philosophy and constraint statements must
apply to every other requirement in a global sénse or they ,
apply not at all. If the interdependencies could be weighted
then it would be possible to assess the relative level of
impact and to establish an objective function to be satisfied.
This objective function could be satisfied by a facility to
describe conceptual models or rathematical relationships on-

line. The mathematical relationship would be of the form of

an expression interrelating different indices or measures

. L
ATLIPERY
T

o N e

™,

'(! B

3R Dt A b

to Ci - - J;‘ e
TR TS ONANCEO | DL T WAL # | N]

-
N

Eoy
SN JPPY S NN

NEFIFPLS

ST

S ot e L

CPRA RPN

Ll

< 151 - !
used to measure the degree of satisfaction of an objective
function provided by each inteérrelationship between require-
ments. The constraints upon the design must also be
represented as limits on certain criteria within which the
final values selected for a system must fall. .Ideally, all
indiceé‘used”gq measure satisfaction of an objective function
must be reduced to a common denominator. For instance, the.
-objective function may be stated in terms ofkresponse~timé
<Ttotal)‘ The.response time is relatéd to CPU. time for
execution (TCPU)' Input/Output time (TI/O)' waiting or

blocked time (T,). Therefore, the objective function could
be stated in terms of Teotal = TCEU + TL/O + T, - Inter-
relationships among requirements would Be -assessed according
to a conceptual model involviig a time index. The decompo-
sition methodology could then provide a relative measure of
the satisfaction of the .objective function by each
decomposition.

9.2.4 ADDITIONAL FEATURES:.

. Design is essentially an art, which is héavily dependent
upon ﬁ§$'5~backgroupd and biases. It would be interesting
although not.mecessary, to implement a facility in the
deccmposition metho?ology which would enable a user to input
his own idea of the "best" decomposition in the form of sub-
problems. The decomposition package should then generate a

measure for the proposed decomposition and would serve as a

relative grade to the designer vis-a-vis the system-generated

"best" decomposition.

I rrenay
s o s Tk

DR s ek 7 A 35 W3 mianarl B2 m s

I+ S .

A
4
M

- 152 -

%3 Summary
This study has. demonstrated that the decomposition
methodology proposed by Dr. Andreu is a useful technigue
‘providing a framework for the/deéigner for use in the
architectural design stage. It i§ recognized that this
methodology is -a first step in the right direction. The
usefulness of the first step was recognized by Mandel and
Chryssostomidis:35
"Unfortunately, the direct contribution of the
computer'tb design methodology is small because the
capabilities provided by the computer do: not augment
the user's ability as a designer but rather .as an
analyst. For this reason, it is felt that research
leading to documentation of an improved large system
design methodology that also takes advantage of today's
tools is both timely and worthwhile."
The value of the decomposition methodology will improve as
the results of its application are verified through similar
research and improvements to the facilities are implemented

by designers in search of a better world.

........

$S4andel and Chryssostomidis, p.85.

o
S

i
SR

%
k%l
)
g

N
-3
2
Rk

]

s
WIEY

- - E - i F
Tevo b ve smnid el

T e Zaend el

T

103

11.

12,

- 153 =

BIBLIOGRAPHY

Alexander, Christopher; Notes on. the Synthetlc Form,
Cambridge, MA, 1966. '

Alford, ‘Mack W.; "A Requlrements Engineering Methodology
for Real-Time Processing Requirements"; I.E.E.E.. Trans-

actzons .on Software Englneerlng, Vol. SE=3, Number 1,

Anderberg, Michael R.; Cluster Analy51s for Appllcatlons,
New York, 1973.

Andreu, Raphael C.; "An. Exercise in Software Architec-
tural Design: From Requlrements to Design Problem

Structure";: Unpublished report, MIT Sloan School, June;
1977.

Andreu, Raphael C.; "A Systematic Approach to the Design’
and Structuring of Complex Software Systems"; Unpublished
Déctoral thesis; MIT Sloan School, February, 1978.

Andreu, R. C. and Madnick, Stuart E.; "A Systematic
Approach to the Design of Complex Systems: Application
to DBMS Design and Evaluation"; Center For Information

Systems Research Report 32, MIT Sloan School, March,
1977.

Bell, Thomas E., Bixler, David C., and Dyer, Margret E.;
"An Extendable Approach to Computer-Aided Software
Requirements. Englneerzng"- I.E.E.E. Transactions:on

Software Englneerlng, Vol. SE-3, Number 1 (Jan. 1877)
49-60.

Bell, T. E. and Thayer, T. A.; "Software Requirements:
Are 'They Really a Problem?"; Proceedings, 2nd Int'l.
Conference on Software Engineering (October, 1976) 61-63.

Bitjen, E. J.; Cluster Analysis; Groningen, Netherlands,
1973.

Blashfield, Rojer K. and Aldenderfer, Mark S.; "A Con-
sumer Report on Cluster Analysis Software"; Unpublished
report, Pennsylvania State University; 1978.

Chu, Y.; "A Methodology for Software Engineering";

I.E.E.E. Transactions on Software Engineering, Vol. SE-1,
Number 3 (Sept. 1975), 262=270-

Dahl, O. J., Dijkstra, E. W., and Hoare, C. A. R.;
Structural Programming, London, 1972.

is.

14.

13.

16

17,
18.

19.

20.

21.

22.

23.

24.

25,

26'

- 154 -

Daly, E. B.i ‘"Management of Software Development"'

I.E.E.E. Transactions on Software Englneerlng, Vol.SE-3,
Number’ 3 (May, 1977), 230-243. ‘

ADav1s, Carl G. and Vlck, Charles R.; "The Software

Development System" I.E.E.E. Transactlons on_Software

4Euglneer1ng, Vol. SE-3, Number 1l (Jan, 19779, 69-85.

Defranco, Steven J.; "Use of Helrarchlcal DecompOSLtlon

in Computer Systems Desmgn", Unpublished Master' s. thesis;
MIT Sloan .School, June, 1977.

Dijkstra, Edsger W.; A DlSClpllne of Programmlng,
Englewood Cliffs, New ~Jersey, 1976.

Donovan, John .J.; Systems Programming, New York, 1972.

Evans, J. Harvey; "Basic Design Concepts"; A.S.N.E.
JOURNAL (November, 1969), 671-678.

Friedman, Jerome H.; "A Recurrsive Partitioning DEClSlOn
Rule for the Parametric Classification"; Stanford Linear
Accelerator Center Report #CS-75-487, Stanford, Calif.,
Jan. 1976.

Huff, Sidney; "An Approach to Constructing Functlonal
Requirement Statements for Preliminary System Design";
Unpublished report, MIT Sloan School, April, 1978.

Leopold, Reuven; Svendsen, CAPT Edward C.; and Kloehn,
Harvey G.; "Warship Design/Combat System Integration:

A Complex Problem Unnecessarily Overcomplicated"; NAVAL
ENGINEER'S JOURNAL, August 1972, 28-54.

Liskov, Barbara H. and Berzins, Valdis; "An Appraisal of
Program Specifications"; Computation Structures Group
Memo 141-1, MIT Laboratory for Computer Science, April,
1977.

Madnick; Stuart E. and Donovan, John J.; Eeratl g
zstems, New York, 1974.

Mandel, P. and Chryssostomidis, C.; "A Design Method-
ology for Ships and Other Complex Systems"; Phil.
Trans. R. Soc. Lond., A .273, (1972), 85-98.

Martin-Marietta Corp; TFCC System Engineering/Software
Development, Preliminary TFCC Data Base Design Document,
DBD-6020605, December, 1976.

Martin-Marietta Corp; "TFCC System Engineering/Software

g
o Rors

KSR

27.

28,

29..

30.

31.

32.

33.

34.

35.

36.

37.

- 155 -

Development,. 'PFCC. Program Performance Specification. for

a Data Management System, DDS-6020 DMS, October, 1976.

“Mllls, Harlan D.; "Softwaré Development"; I.E.E. E.

Transactlons on Software Englneerlng, Vol. SE~2, Number

§ (Dec.. 1976), 265-274.

Noonan, R: E.;"Structural Programming and Formal Speci-

fication"; I.E.E.E. Transactions on ‘Software. Englneerlng,
Vo. SE-1, Number 4 (Dec. 1975), 421-425. °

Parnas, David L.; "A Techniques of Software Module
Specification with Example"; Communications of the ACM,
Vol. 15, Numbei 5 (May, 1972), 330-337.

Parnas, David L.; "Oon thé Criteria to be Used in Decom-
posing Systeéms into. Modules"; Communications of the ACM,
Vol. 15, Number 12 (Dec, 1972), 1053-1058.

Parnas, David L.; "The Use of Precise Specifications in
the Development of Software"; Proceedings of Information
Proce381ng ‘77, (1977).

Punj, Doreen; Madnick, Stuart E.; and DeTreville, John
D.; "A Survey of Navy Tactical Computer Applications and
Executlons"; Center for Information Systems Research
Report 19, MIT Sloan School, October, 1975.

RCA, ‘Government and' Commercial Systems, Missile and
Surface Radar Division; "Real Time ‘Tactical Operating
Systems Study, Second Quarterly Report; Moorsetown,
New Jersey, 1974.

Reinhard, Nicolau; "An Experiment with Software Design
Technigues"; Unpublished report, MIT Sloan School,
Jariuary, 1978.

"]
Ross, D. T. and Schoman, K. E., Jr.; "Structural
Analysms for Requirements Definition"; I.E.E.E. Trans-
actions on Software Engineerlng, Vol. SE-3, Number 1
{Jan. 1977), 6-16.

Salter, Kenneth G.; "A Methodology for Decomposing
System Requirements into Data Processing Requirements";
Proceedings, 2nd Int'l. Conf. on Software Engineering,
October, 1976.

Slagle, J. R.; Chang, C.-L.; and Lee, R. C. T.; "Experi-
ments with Some Cluster Analysis Algorithms"; I.E.E.E.
JOURNAL, Vol. 6, 1974, 181-187.

b g

e T e Ly e L

oy

i

it

29
AL

%
|
L
;3
* ‘3
v
"
S

¥

X

e

TR AT
L T e S AP e

SRR

v v o

18,

39,

40.

41,

O

- 156 <

slagle, J. R.i Chang, C.=Lus .and Héller, S: Ri: "A

Clustering and Data-Reorganizing Algorithm", I.E.E.E.,

1975, 125-128.

Slagle, J. and Lee, Richard C. T.: “Application of
Automatic Clustéring to Emitter Identification”; Naval
Research Laboratory Memorandum Report 3407, November,
1976.. ~

:Sokal, Robert R. and Sneath, Peter H. A.; Principle of

Numériéal‘Taxonomy;.Saﬁ-FfaﬁCiscc,(ISGS. T

Spero; J. R.; Hicks, W. F,; and Greéne, D. L:; "A

Philosophy of ‘Naval Ship Desigh and Construction"; NAVAL

ENGINEER'S JOURNAL, October 1971, 45-52.

& P anP ke e had et el

AT TS RT AR A NN At RSN g 3em s v T Ars mom smowe < Am wm sime i sarva ravs svee s e —— - . - -
- A PR T » : - P i g e T BEARS T n ey s T - B Y N I T T T ST, .

5 R’ A . Rt g x R O S T P e .
R i i~ ¢ ! > . .

Te Bl W

4

- 157

U

APPENDIX A

Formal Specification of Evaluation Parameters

N

FORMAL ‘SPECTFICATION. OF EVALUATION PARAMETERS:>®

graph as a pair (X,L), where

Given a
{xlx = 1,2,.... |X]}, the set of |X| objects,**

X @
and
L i fzijrzij exists if a link joins objects i.and je X},
the set of links,
Define
A aij‘aij = 1 if exists, O otherwise , the
adjacency matrix associated with the graph.
Then, the strength Si of a subset xigx can be expressed]
as: . E
2 a,, = {|x;]-1) “
ko feX, et * =
g = k32 v
i - |
AR
2 |
while the coupline Ci' between the subsets xi and X.CX, ?
#4|X| s used to indicate the cardinality of set X.
36 :
Andreu, pp. 100-101. “3
1
,‘-‘;Ir(i; >

2 159 =

Xy :Xj‘%ﬂ¢;(théwe@pty set) can be written ass

E

C1‘=« . .
J l X, l- [x.l
A partition P of X,

. ‘ P
P {:xl,xrz,...,xp} . X

i=1 i

is then assigned a measure M:

M IZ): S EZ) C
= PR .
j=] * j=1 3
J=i+l
The behavior of M is such that the higher its value,
the better the -associated partition for our purposes, so. that

we -should, in fact, search for the partition with maximum M

value over all possible partitions of the set under decom-

position.

L

. .- O A
. B N Ve <y SRR RA £
it ol e S o T b Tt AR PSR feaids

TR

S
ERTUTETY s SN SR Y. s 2R R

RO S SN2

& . . v
JUY7 - SRR

a3

PECC MR

i s ke st 4o i

¢
(o, w4

e R SR e SR e T i T et . Y
, 4
. o
! o '
) .9
43 t
a
cv -
. he iy .
I t e ‘
S n 5
, r M o 2 w
, g ;
[=2 v - 3 }
am [} ° w) M,,
o~ o (
, = g 9 |
' & Hoa
0y H b
oo O M
- W]
V » m ° m
3
, i |
,, B . |
¢ l, ;
<
. .
i,

e
. -~

L

(ﬁﬂ

- 161 =
ALGORITHM FOR THE IDENTIFICATION OF KERNEL SUBSETS:?’
Récalling the following definitions:.

. ‘The "core set" CS, associated with a node o, to be the

set dsi & {§i195 s.t;.aij = 1}; i.e., the seét of all
nodes related to o,, including o, itself, and
. The "connectivity" of node o; to be "3

¢; = s, | - 1, where by |X| we mean the dimension of

il
-
g
)
L
2
-
.
o
‘ g
B
]
!
3

:
A
,
§

set X.

-

The identification of kernel subsets can be done iteratively

1",L

Sy
Y LR S L O Y.

.using the following procediire:

0) Set J =0,

A»:/;n T

P = f - - . d
1) Compute cy Voi e 0., If cy * cj ¥ 1,3, set J = J+1; 7%
KESU(J) = 0; stop. %
2) Consider the k (> 1, a number specified a priori; g
see the end of this section for considerations about ?

its value) nodes with highest cy .. Without loss of
generality, assume that these are the nodes

Ol,’. . .Ok.

WY @ e 5 B S it e bl £ b

3) Determine CS; for o, i {oyreeviopl). 3
i#j
5) Se;ect op € {ol,u..,ok} such that KSP?;E?i..,k(IKSiI)

N " N
ARa b mE a8 o v LV . S oA

ot e

it odee re

37 andpen, pp. 125-126.

T

- 162 =
6) :Set J = I+l

If |Ks,] = |CS,|, set DESU(T) = O and stop, else

se: U(J) = o. [CS. = KS_I.
et KESU(J) o,p [S,p' ‘pJ

7) Sét current set to:
0 =0 - RESU(J); if [0} = 0, stop.
8) Recompute A:

,old‘ai 1f“0iqoje'0

3

A {aijlaij ® mark it "nonexistent" otherwise

"9) k=k=1;
If k> o], set k= [0+ -
Go to 1.
Once. the procedure is executed, J Kernel subsets

KESU(1);...,KESU J have been identified.

1}

N

.

e Sk e B

A

s o m en s, - . oy N e A BT SRt

i o Ane v WS B £ n o R L R TO N TEISEI AT e st S et o Sl b Ay , Wy
B T T e e R et h S

FETR T T = Lo i 7 s B T ' '

<

ts

]
e 4
‘ g ,\
. E |
H :
ol :
u ¥
) & :
. v © ~ H
© >¢ A Y
: @ 5 " u
o e w :
¥ @A)
o 0
Ay
< - >
o
» b ,
T, ! n r.
ul :
; 3 ,‘
-l<
: —
. o
.
o .
1 -

10.

11.

12.

l3.

- 164 -
The opérating system must be simple, implementing a
basic system nucleus,
The operating .system must be degigned..as a. pedagdgical
tool.
The operating sytem must be .small; pcéugying&fewér
than 2500 cards of assembly language statements.
The operating system is to be implemented utilizing
IBM/360 hardware.
The operating systen must provide for .a multi-program-
ming -environment.
The operating system must be process oriented..
The operating system must run on a machine that has two
distinct states.
All resource requests must pass through the superVi§d@‘
process. .
System resources must be allocated to a job, prior to
the job being made eligible to run.
A process must be ready to run prior to being allocated
to a processor.
User communication with the operating system to VIA.SVC
Instructions.
The operating system must protect the user jobs from
each other.

The operating system must utilize information tables to

monitor and control processing.

e e oo s bt smmente T b e+ s e il ran i

Wy
Te

P N »
o R e ey R T C et

Pty e aepss e

AT

[

14;1

18.
19.
20.

21.

22,
23.

24.

25.

26.

?f¥65 -

System: tablés can be dynamically allocateéd and

:eieaégd;

Certain extendéd machine instructions are user callable.

System processes are re-entrant and shared.
Extended machine instructions .are execiited in thé

supérvisor state.

‘The. 'supervisor process: must create and delete the
environment in which a job runs.

Initially one process .is created for each user's job:

Jobs are -scheduléd on a first come, first served
basis.

The job scheduling function must be modularized so
that improvements to the system can be easily
accomplished.

The process schedulermust time-slice CPU usage to
achieve multi-programming.

Ready processes are scheduled in simple round-robin
fashion by the traffic controller.

A process shall be blocked, and control released to
the traffic controller when a timer runout trap is
detected.

A process shall be blocked and control passed to the
traffic controller when the process must wait for
synchronization with another process.

A process is bldocked when it relinguishes controller

to the traffic controller.

R - - s s s s e e e e a3 i s 4 i s e P SN T2

o e MR L A T G 3 R KR B IAYY 3A T

I

s
‘
#
s

RYIRP

PRIt

2574

30.

31.

32.

33.
34.

35.

36.

37.

38.
39.

40.

- 166 =

‘The supérvisor routine must reclaim all system
resources for a job when the job. has completed.

‘The -supervisor process must reclaim all system
résources when an error condition abnormally terminates
a jobu.

Referénce to processes within a process group is by
symbolic name. |
The operating system must allocate memory for job
partitions, the size of which .is specified by the user.
Memory is :allocated to a job in contiguous 2 K

blocks.

'The operating system may dynamically allocate memory
to itself for system processes.

Memory is allocated using a best-fit algorithm.

Memory must be protected to prevent the gimultaneous
allocation of a partition to multiple. jobs.
Free storage .areas' are collapsed into contiguous blocks
of memory whenever a partition is freed.

Operating system. must supply a device management system
which runs as a separate process, one per device.

Device handler routines must support multiple job

streams from card readers.

All devices are dedicated.

The device handler routine Supports one card reader

per input stream.

Device handler must support one line printer per output

Stream.

L=

BRI vy oL N
ISR T VO BRI O

Ry
e

\ e

=T
PELEAr

o

e
A

i
e wdORED

=

k)
S ararics ALY

B,
AT -

\
X X .
e A P .
U NURS. o ST S SR P VS PRURE N ST

P 0 B SV RN

<

e

PR S S

41.
42,

43,
44,
45,
46.
47.
48.

50.
51,
52,
53'

54.

55.
56.

57.

58.

- 167 =
Input/output devices operate via multiplexor channel.
‘the user ‘cah ‘provide his -own routine for non-standard
devices:

A ‘process .synchronization mechanism must be provided.
An. inteérrupt mechanism must. be provided.

'P-V operations are available only to)system.procesSes,
A message facility must be provided for user processes.
The message facility is accéssible by all processes.
The name of the sending process must be prefixed to a
message.

‘The receiving process must read the name and ‘text from
the originator.

Messages are of arbitrary yet specified length:

Any number of messages may be gqueued while waiting to
be read by a process.

All messages are released when a process terminates.
Messages are not receipted for, from receiver to sender.
If no messages are available to a process which expects
one, it goes blocked.

User programs utilize a simplified job contrqgl language.

The operating systém must accept input data from the

“user's job stream.

The supervisor process must load the user's supplied
object code deck into the user partition.

The user procéss may dynamically create and destroy

additional processes.

U WIS TV L.
e 4 o b :.—:" B I L BT S

R

[SN

PR W

[T

e e vs e

T T i PR

T e .

59.

60,
61.

62.

63

"640

65

Dynamically cteatéd proceésses run in the same partis

tion .as the parfent job.

User processes cannot dynamically -allocate memory-.
‘Uset processes cannot destroy system processes within

the game process .group.

User jprocesses. run in the problem state.

The user process must signal completion of the process

to: the operating system.

The ‘user's job can refereénce one input device, one
output device, and one exceptional device.

There is -only one supervisor processes per job

Stream.

N T T T

- \ ;
IR A TR AT S e

A e st

v aaive

L DR

APPENDIX D

Preliminary Interdependency Assessment
Results

Note: (1) (s)- Indicates that the requirement
indicated supports the imple-
mentation of the —equirement
being assessed.

(¢) 1Indicates that the requirement
indicated conflicts with the
implementation of the require-
ment being assessed.

(2) Requirements 1 through 4 were not

assessed for the reasons stated in
4.1.10.

T

VR . -
T B TR 03 % d S EAGTAHGT L AR R e 11 A maate s LTS TTR

e SR D

S T AR

«
[P S

aan

P

Iy

v
]
“

FOPIN

O

.

.

= Y70 =

The operating :syste must provide for a multi=

Programmifig environment:

81(s)«

9.(s).:

16(s) :

19(s)+

20(s):

22(s):

34(s):

37(s);

43(s):

55(s):

The operating systém must allocate resources. as
a job is read into the system.

Resource allocation is performed as a job is
read iﬁto'the system, except fo¥ processor
allocation.

The need for pure procedures is driven by the

fieed’ to provide for a multi-programming

environment.

The .supervisor process creates .one. process per
job initially in support of multi-programming.
Multi-programming requires that the jobs be
scheduled.

Time slicing CPU usage facilitates multi-

‘programming.

Multi-programming requires that memory be
protected to prevent simultaneous allocations
of partitions.

Device handler routine facilitates the reading
of multiple job :streams from different sodrces;
Process synchronization mechanism is used to
coordinate multi-programming.

JCL facility assists multi-programming by
delineating jobs and specifying resource

requirements.

i el ot e i

.
NI SR

- 171 -

65(s)+ The supervisor process controls multi=

programming environment. 1

6: Operating System must be process oriented.
10(5): The process has certain resource requirements
apart from job level requirements.

11(s): The SVC instruction support process requirements..

- MR A7 ~ e e N
¥ NI ~ ~ o 2 il B pa
B o e b St e s, TEre i e AR 53

3

e Atena

'13(s):: Most information is maintained at a process
N level. |
19(s)+r A user job begins as a process.
22(s): Process environment requires the use of a traffic

controller to achieve multi-programming.

e o uebn S Fh il s atda e e

23(s): An algorithm is required for process scheduling.

25(s): Multi-process synchronization is a basic

B | I

35
k

function required for a process environment.

26 (s): Relinquishing control to the traffic controller

ERICE SR

is a basic function of a process environment.
29(s): The naming of process is required as a means of
identification, g
43(s): Process synchronization mechanism is a basic
tool. for process oriented support. |
46(s): The message facility is a basic means of inter-
process communication.
47 (s): Message facility must be available to all user é
processes.
58(s): Dynamic process creation is a basic function for

a process environment. :

o - _ L PR R L v v S . e -

- g@j &
Operating -system must run of a-machine that hds two:
distinct states.
that the user fay be restricted from certainm
privileded instructions:
15(s): Only cer:aig\évc instrucdtions are user callables
17.(s): 8V€ instructions. explicitly executed in the
supervisor state.
62(s): Usér programs run in the problem state; hence,

system processes run in the supervisor state.

All resource requests must pass through the supervisor
process.
9(s): All resource requests must be made prior to a

job being eligible to run.

13(s): Information tables contain the information
concerning resource allocation.

27(s): Supervisor also reclaims resources when a job
‘has compieted.

28(s): Same as 27.

30(s): Memory requests are user generated:

32(s): Dynamic memory allocation takes place through
“the- :superviscr process. A

S55(s): JCL facility specifies the resources required

of a job to the supervisor process.

~66(c): The user cannot dynamically allocate memory.

v

J;; n

g i

%
3 -
warnd ik Aot

iz

.
vt vk ae M PR e o

"ot s e b aran Sire

3 o e

RIS ST S 3

s e

S BEAT TP A

5 R S O Weaihad ey
e TR A PRy
. R

.1,;:: z

10

64/(sys The user 1§ restricted in the number of I/O

dévices hé may reduest.

Systém: resources must be allocated t6 a job, pPriof to

thé job being made eligible to: run.

10::(c): ‘Thére are user resources; i.e., the processor,

which are allocated at the process level.

27:{(s)+ The same process reclaims resources upon
completion..

28: (s): ‘same as 27.

30:(s): Mémory allocation must fall within this require-
ment.

36:(s): Device handler routine is started for -each job
at this time..

55:(s): JCL facility identifies resources required of a

job.

A process must be ready té run prior to being allocated

a processor.

13:(s): A process's status is maintained in an informa-
tion table (PCB).

19:(c): Initially the user's job is a process:.

20:(s): The traffic controller may select a ready process
only.

23(s): Ready processes must be chained into a list of
eligible processes.

25(c): A process is not teady if blocked.

73

A5 e > § 2o N £ A

X
T

oo
B

NS N
ST 08 NS TS et
‘.h‘&\xﬁi

- 174 = 13
i : 2‘3?(::‘)'5, Same as 25..
54(3): ‘Same as 25.
11: User communication with khe:dperating»syStgmnis:via‘Svc é
instruction.
15:(¢): ‘Only certain SVC instructions are user callable. ?é
26'(s):r A process: relinquishes control via sVC :
. instruction.

46 (s): A request to send a message is. via SVC

e P R
P P /‘ i
[A RPN R

instruction. .
49(s): A redquest to read a message is via SVC .
instruction. E
53(s): Dynamic process creation/destruction is via SVC é
instruction. %E
63(s): A process can signal‘job completion wvia SVC E
instruction. ?
12: The operating system must protect user jobs from each v%
other. @é
13:(s): Information tables contain information on jobs, §
processes and resources. é
18(s): Supervisor routine creates .a separate environ- :g%
ment for each job and essentially isolates it é

from other jobs.

34(s): Memory is also required to be protected from
simultaneous user jobs.

36(s): fhe device management routine runs as a .separate

process, one per device to isolate jobs.

13

37(e) ¢

43.(8)

59(s)e

monitoxr

14(s8)

23(s) :

30(s) s

32(s)

35(s):

36:(s):

43:(8):

46:(s8):

s 175 =

The device handler routines-deal with many jobs

and must isolate -edch one.

The P-V operations serve as a: locking function
and help to insure verifiable access rights.
Dynamically -created process must remain within

their process .group.

' Operating system must utilize information table to

and control processing.

Dynamic a}location of system tables is réqﬁire@
for multi-programming environment.

Roiind-robin scheduling is most effectively
accomplished by chaining PCB's.

Memory allocation requires adfustment to infor=
mation tables. ‘

Dynamic. allocation of mémory by the operating
system is used for tables.

Free storage Qlocks must be updated each time
memory is freed.

Unit control blocks are built and maintained by
the operating system.

P-V operations are used extensively to update
semaphores and lock resources.

The message facility is a buffered table which

is used to pass information between processes.

R N
et R o

wi

[PV SNSRI

PRI o N

P A U

L*H‘w s CELTE 9 5 o LB " oS e e o+ e

- 176 =
Q:} 14: System tables <an be -dynamically allocated and released.
32(s): Dynamic memory allocation fully supports this
requirement.

51(s): The queuing of messages requires a dynamic i
allogation facility. x
60(c): The user ‘is strictly prohibited from dynamic 3§
allocation. é
15: Certain extended machine constructions are user callable. o
26(s): The process may issue a~ SVC instruction to -stop . é
itself. '“%
47(s): Message faciiity is implemented with user ’ é
illable SvC's. i
{:} 58(s): Dynamic process creation is implemented with é
.user callable SVC's. é
63(s): User signals completion via an SVC instruction. : E
16: System process routine an re-entrant and shared. E
21(s): Job scheduling is a system process which must be -
shared.. ,é
32:(s): The operating system maintains pure codg by ?
dynamically allocating memory for work space '?
.g for system routines. é
é 36(s): The deviceé management process is a system process /é
u? which must be shared. 'é
§ 6l(c): User processes cannot destroy system processes. S
. {/' . o~

= 177 =

17: Extended machineé instructions are executed: in the

18

19

20

supervisor state.
44(s): The interrupt handler must be provided to service

an SVC interrupt.

The supervisor process must create and delete the

-environment in which a job runs.

19:(s): The supervisor initially creatés one process per
job. '

27:(s): This requirement deals with the destruction of
processes.

28(s): Same as 27.

58(s): User creation of processes supplements the job
environment.

61(c): The user cannot destroy the entire job

enviironment.

Initially one process is created for each user's job.

'58(8): 'The user process may create additional processes

to create a process group.

Jobs are scheduled strictly on a first come, first
served basis. '
21(s): FCFS scheduling is simplistic; therefore, we c¢an
improve system performance at some later time
if this is strictly modularized.

39(s): The fact that all input devices are dedicated

forces us to use an FCFS algorithm.

T NG S Rm AT s o N AN HT T e b W TE re RAGRRE IMEnYn gt I g

A | A

EERCTE
Py

U SUR PN

o i e

8" Lo

wmte s Amd hs

R N

- 178 =

21: The job scheduling function must be modularized so that
improvements to the system can be .easily accomplished.
37(s)4 1In order to improve the sophistication of the

job scheduler, it would be necessary to inter-

face to a great extent with the device handler

routine.
39(s): Again for the same reason, improvements to the

job scheduler are accomplished in conjunction S

with input stream handler.
55(s): JCL would be affected by improvements to thé

job> scheduler.

22: The process scheduler (traffic controller) must time-
slice CPU usage to achieve multi-programming.

24(s): Timer runout trap is the result of CPU usage

being exceeded.

G e P L e R B

25(c): A process may terminate while awaiting

e 2NN

synchronization.

s - 8

26(c): A process may terminate voluntarily.

W et

Sy

44 (s): The interrupt handler processes a timer runout 14

and returns control to the traffic controller.

WA i P e ¢ e

23: Ready processes are scheduled in simple round-robin

fashion by the traffic controller.

PP

44(s): The interrupt handler gives control to the
traffic controller in order to dispatch another

process.

THCE & 2wt o vd? b X AR s B2 7 3O

- 179 =
58:(c): Since proceésses arée schéduléd in this fashion
a usér may desire to create more processes in
corder. to grab a larger time quantum.
63(s).: »Uséﬁ signals completion 'so thiat thé next process

may start up.

24: A process shall be blocked, and control released to. the
traffic controller, when. a timer runout trap is deleted.
44(s): ‘'The interrupt handler is the means by which the

traffic controller regains control.

25: A process. shall be blocked and control passed to the
traffic controller when the process must wait for
synchronization with another process.

29(s): Processes must be uniquely identifiable in oxder
to synchronize.

43(s): P-V operations are used szstem—widg for synchro-
nization; but this is directed towards
synchronization of system processes.

46(s): User synchronization can be accomplished via the
message .facility.

47 (s): Message facility is available to users.

54(s): A process, expecting a synchronizing message, is

blocked until it receives one.

26: A process is blocked when it relinquishes control to the

traffic controller.

27

28

63(s):

= 180 =

The usér must relinquish .control by a specific

'signal to: the operating system.

The supervisor routine must reclaim all system resources

for a job when the job has completed.

28 (c):

35(s):

6 (s):

38(s):

44 (s):

6l(c):

63(s):

The .supervisor must also reclaim resources if a
user commits an error.

‘When memory is freed by direction of the
supervisor it must also re-configure.

The dévice handler routine is a resource that
must be reclaimed.

The devices used must be released.

A program interrupt starts things happening.
The supervisor routine must destroy all system
processes for a job which terminates.

The user must signal completion.

The supervisor process must reclaim all system resources

when an error condition abnormally terminates a job.

35i(s):

36:(s):

38(s):

44 (s):

6l(c):

Memory is re-configured when it is reclaimed.
The device management routine must be reclaimed.

Devices resources must be reclaimed at this

time.

The interrupt handler signals that an error has

occurred.

The supervisor must destroy all system processes

for a terminated job.

- 181 =

29: Referencé to processeés. within a process group is by

30:

31:

symbolic name.

48:(s)

49 (s):

59:(s)

The sending process must have a name.
The receiving process must have a name for ‘the
message facility to operate..

Names are unique with a partition.

The operating system must allocate memory for job.

partitions, the size of which is specified by the user.

31 (c):

32(c):
33(s):

55(s):

59(c):

60(c):

Memory allocation is limited to increments of
2K blocks,

Memory may also be allocated by the systen.

A list of free areas ig updated each time a
partition is freed.

A simplified JCL is available for the user to
specify his memory requirements.

Memory partition requésted must be large enough
for all dynamically created processed..

The user cannot dynamically allocate memory.

Memory is allocated to a job in contiguous 2K blocks.

32(c):

33(s):
34(s):

The operating system does not need memory,
allocated on 2K blocks since it has its own
protection scheme.

Best-Fit algorithix memorizes partition waste.
Allocation in 2K blocks allows hardware

protection by the IBM 360 system.

AP

se, ')
R

PR VNN

ot B

32;

33

34

- 182 B
35(s): Memory is re=-configured whenever it is freed.
43(s).: P-V opérations cah serve as a lock on :a .database..

55(s): The user specifies memory requirements using JCL.

Operating system may dynamically allocate memory. to

itself for system processes.

34(s).: System workspaces must be protected the same. as
user work spaces.

35(s):: Freé areas are collapsed for system processes.

36(s): Device management system requires memory for its
own tables.

51(s): Message queuing facility requires memory.

60{c): The user cannot. dynamically allocate memory'.

Memory is allocatéd using & best-fit algorithm.

.35(5); Memory is reconfigured when deallocated to
insure that the largest contiguous blocks are
available.

55(s): User must specify memdry requirements on JCL.

Memory must be protected to prevent the simultaneous

allocation of a partition to multiple jobs.

43: (s) : The P-V operation is used extensively as a
lock on a database.

44: (s): The interrupt handler is provided as a means
of detecting out-of-bounds memory requests.

59(s): Dynamically created processes must run in thé

partition of the parent job which further

DT RTEN

ey
Vg o S

T 6

SR

rey
e

S,

iex

R eI |

- 183 #
Pprotects memdry.
60(s): The usér is prévented from: allocating ddditional

‘memory.

35 FrEg'stqrage‘a;éasAa;é q&liapsed4iﬁtc‘contigudusﬁbiogks
of memory whenever a partition is freed.
63i(s): The user must signal completion to the -operating

$ystem 'so that partition can be freed.

36: Operating system must supply a ‘device management system,

371(s): Device handler must be includeéd within device.
management system..

" 38(s): Since devices are dedicated, only one process
d per device is required.

39(s); These constituté the specific requirements of
the device handler routine.

40(s): Same as above.

41(s): Since 1/0 devices operate via multiplexor
channel there is not need for 1/0 traffic
controller.

42(s): Device management system must enable thé user
to supply his own hardling routines.

43(s): P-V operation is used to lock devices.

44(s): P-V plus limited interrupt facility provide I/O

interface.

ST RIS GURRTE s VS L A, A

PSIIINE Js

e et
et e

- 184 =~

37: Device handler routines must support multiple job

38

39

stréams from .card readefs.

381(s):

39 (s).:

41(s):

43(s):
56:(s):

Dedicated deviées enable sequential proc¢essing

and simplify designation of job. streams.

A card reader trepresents an input stream; hence,

multiple card readers represent multiple job

streams.

Multiplexed channels enable simultanéous servicing
of multiple devices.

P-V operations are used to lock devices,

The .devige handler must be able to distinguish

among user decks and data cards.

All devices are dedicated.

39:(s):

40(s):

41(s):

42(c):

43(s):
64(s):

Since agvices are dedicated, a card reader
represents an input stream.

Since devices are ded%cated, a. line printer
represents;.an output stream.

Multiplexed channel is used for dedicated
service.

Non-standard devices may not necessarily be
dedicated.

P-V operations.are used to lock devices.

User must specify which devices are being used

by his program.

The device handler routine supports one card reader per

input stream.

T

,.
R

T s P o E S E LTI

AL

i K i

gy

- 185 =
40(¢): THe output stréam -conversely supports one
line printer.
41(8): Multiplexing ‘eliminates the need for an I/0
traffic controdller.
42(c): A usér may specify his own routine.
64($): The usér must designate the card reader to be

used. N

40: Device handler must support one line printer per output ?3
stream. fis
41(s): Multiplexing eliminates the need for an I/D

traffic controller.

P 3

42(s): A user can supply his own routines.
64(s): The user must specify the line printer to be
. used:

\ A

41: Input/output devices operaté via multiplexor channel.
42(¢): The user may provide his own routines and I/0
interface.

43(s): The P~V operation can be used to lock a device.

I 56 (s): Input data for a user's program must be accepted o
é via multiplex or channel. f
%~ 42: The user can provide his own routine for non-standard ’
é\ devices. <
54 64: The user must specify the use of an exceptional :
%f device to the system via JCL. ”j

4G B

43+

44

46

48

v e — T
T T

- 186 -

A process syrchronization mechanism must be provided.

45(s).:

63.(s):

47:(s) ¢

48: (s)s
49: (s)
503 (s) ¢
51:(s):

52:(s) s
53:(8):
54:(s):

The synchronization mechanism is used as the:
basis :for process support and, therefore, is

not. availablé to users.

:.An interrupt handler must be provided.

A uSer signals completion: via SVC interrupt.

A message facility must be provided for user processes.

The' message facility is available to all
processes.

Requirements for sending a message.

Requirements for receiving a message.

This contains the message length réquirement.
Messages may be queued in order to be read by a
process.

Messages are released when a process terminates.
The message facility has no receipt mechanism.

Messages can be used for process synchroéonization.

The name of the sending process must be prefixed to a

‘message.

49 (s):

The receiving message must be able to read from

*whom the message came.

53(s):

54(s):

The message facility does not receipt for
message transfer.
The message facility can be used for one-to-one

process synchronization.

‘

T

TXEEYEEN

49:

52

55

56

The recéiving process must read the hame and ‘text €rom

the originator.

“

51(c): The queuing process makes it esséntial that

the nessage receiver be able to tell f£rém
whence the message came.,
53(¢)¢ MessagesS are not receipted for.
54(c).s A process awaiting synchronization must bLe able:
to détermine that the message is from the

proper source.

Messages are of an arbitrary, yet specifiedziength.
51.(s): Since messages may vary in length, queuing them
is the most simplistic means of dealing with

the variable length.

All messages are released when a process terminates.
53(s): The sending process may have been ‘terminated

before the receiving process read the message.

User programs utilize a simplified job control language.

60:(s): User is limited to the amount .0of memory
specified in his JCL.

64(s): The user must specify his input/output device

requirements utilizing JCL statements.

The operating system must accept input data from the

user's job stream.

| . :f‘:;b:i:';%d .

:Ai % s -

57

58

59

61

- 188 -
65: (s) » The suéerViscf process controls theé loading of

the user's deck into the machine.

The' supervisor process must load the user-supplied

object deck into the user partition.

60:(s): Once the user's deck is loaded, ‘he is stuck
with whatever memory partition he requested.

:65: (s): The supervisor process handles the loading

function.

The. user process may dynamically create and destroy

additional processes.

59(s): Dynamically created processes are limited to
the user's partition. |

60(c): The user cannot destroy system processes.

61(5): User~-created processes are limited to problem

state..

Dynamically created processes run in the same partition

as the parent job.

60: (s): The user process cannot create processes which
also expand its memory requirements.

62: (s): User processes all run to problem state.

User processes cannot destroy system processes within
‘the same process group.
62:(s): Since all user processes run in the problem

state, and svstem processes in the -supervisor

e S o=

vy

< 189 = ¥
state, we .afre protécted.
63+ The user process must Signal completion of the process.
to the operating system..
653 ‘The ‘supervisor procéss now takes over to re=
claim: resources or to signal the traffic
coritroller.
o o R

;
;
,ul\..wwi\!%«u’j./rm : ,m
AR ERE N .”
|
o
o
. ry
\ e}
. .
“ o
o 9
;]
E s
o i
o 9 |
a5
, I
: I
; | i
3 . t Ol
w .v.A_]
S B ,
d g g
) : |
2 & "
o
()Y e :
— : M
. | %
- ,
Hoom
f i .
o
Y
S
v
o
| ,
, [
MH
P
2
5
e
4

= 191 =
MNOLK
RECORLED LINKS,
FROM NOLRE TO. NORE(S) ¢
5 (11) 8s 9y 14s 197 20y 22y 34y 37 43y 554
. 65y . . ,
& ¢ A3) 10y 11y 13y 19, 22y 23» 25y 26y 295 43
i 44y 47y 58y
7 ¢ 4) tly 13y 179 62y o
8 (10) 3y 9+ 13y 275 28y 30y 32y 33y 40y 44»
? ¢ 8)» Sy 8y 10y 27y 28y 30y 34y 55y
100 ¢ 9) by Gy 13y 1Ps 20y 23y 25y 24¢ S4y
11 ¢ 8) &y 79 10y 6y 44y 49y TBy 63y
13 ¢ 79 43y 185 34y Féy 371 43y 89y o ‘
13 ¢ 43) 6, 8y 100 A2y 14y 23y 30y 325 35y 36
_ 43s 44y
14 £ 4) 13y 32y T1» &0y
15 &Y 7y 11y 262 475 98y 63y
L6 ¢ gy Gy 2Ly 325 3ér blv
L7 ¢ 2 7y A4y
18 (6) 129 19y 27y 2%y 58» 61y
19 (9 Sy 63 10y 18y 58y
20 ¢ 4) Sy 10y 21y 3%)
21 ¢ 'G) 1ér 20y 37y 39y S5y
22 (&) Sy &s 24y 2Ty 24» 44y
23 ¢ &) és 10 13y A4y S8y 63y
24 7 2) 22y 44y
25 (8) &y L0» 22y 29y 43y 46y 47y T4y
28 ¢ &) 4y 10y 1Lls 1Ty 22y 43y
27 ¢ 10) 8y 9y 18y 28y 35y 36y 38y 44y 461y &3
28 ¢ 9 8y 9y 18y 27y 35y 36y 38y 44y 61y
29 (&)y 6y 25, 48y 49y 58y 9
30 ¢ 9) 8r 9y 13y 31y 32y 33y 53y G99y &0y
31 ¢ 7)) 30y 32y 33y .34y 3Gy, 43y 3G9y
32 C 11y R 13y 14y 16y 30y 31y 34r 35y 34y Sl
403
33 ¢ 4) 30» 31, 35y 8S»
34 C 9 Sy 12y 3Ly 32y 43y 44y 59y &0y 62y
349 C 7)) 13y 27y 28y 31y 32y 33y &3y)
34 ¢ 19) 9y 12y 13y 169 27y 28y 32y 37y 38» 39y
. 40r 41y 42y 43y 44y)
37 ¢ 9) Gy 12y 21y 36y 38y 39» 41y 43y G4
ag ¢ 10) 27y 2By 34 37» 39y 40y 41y 425 43y 44y
39 ¢ 2) 20y 21y 389 37y 38 40» 41y 42y S49
49 ¢ &) 3ér 39y 399 41y A2y S44
41 (8) 3&r 37y 38y 3% 40y 42y 43r by
42 (&) 34y 38y 397 40 41y &4y
33 ¢ 12 Sy S5y 13y 132 25y 312 34y 36r 372 38y
412 45y
44 C %) 17, 22y 23y 24y 27y 28¢ 34, 3b5v 63y
45 (1) 43y
A4 (123 b 1ly 139 28y A7y 487 4%y 50 S1ly 524

J3y SAy

s o atein ’,’;H

S P

fondd = s -A".“g.ﬁ.
= 192 =
47 4 4F by 195 285y do. -
Ca8 (5 29y 4by 49y u37,54i
49 ¢ 7r Ly 299 4é6s 48y 51, 539 S4y
, 500 20 4éy Sly)
5# £) 14y 37y 44y 49y 50,
52 ¢ D) 48, 535 o
53 ¢ 4) 44» 48y 495 52y
S4 (9 10y 25y 46y 48r 49
5S¢ 9 S5 8y Py 215 30» 31y 33» 60r 64y
38 (3% .37y 41y 65y

b?‘ ¢ 2) 80y &9y ‘
58 ¢ 10) &y 11y 159 18y 19y 23y 29y 59 60y 61y
59 ¢ 79 12y 292 30y 34 58y 60y &2
14 ¢ 9) 8» 14y 30y 32, 34y S8y 37y 58y 59y
At (0 4)Y by 1By 27y 28y S8y 42y
62 (42 7y 34y §9s 61y 4 » ‘
63« ¢ 8 1ly 13y 23y 26y 27y 33y 44y 65y
64 (&) 8y 38y 39y 40y 42y 58y
&3 ¢ &) Gy J&y 57y 63y
(AVERAGE. NO. OF LINKS FER NOUE: &.038),
REQ?
1801
ISOLATED NORES?
1
2
3
4
A,
&7
48
by
REQS
JHENQ

SLrR93vArbS5r 87068189/

(HE FOLLOWING NOLDES HAVE BEEN REMOVED:
1 2 3 4 Ak 47 48 &9

‘.
e P e L;

P

PO p—— o e s i et i o e s e ——

e
; ‘<: NOJES HAVE BEEN RENAMED AS FOLLOWS:
(LD NG NEW MO

4.——-._--.-.-—-—.-_.--“—.-.-

R

20 16 '
21 i7
22 18
23 19
24 20
25 21
26 22
27 23
2 24
29 25
30 26
31 2
32, 28
33 29
34 30
35 31
34 32
37 33
33 34
39 35
40 36
41 37
a2 38
43 39
44 40
45 41
44 42
47 43
48 44
49 45
50 44
51 47
52 48

O G

~ R
S, ey * ol - Nt .
: - = LW st
el
o

[—

53
o4
99
iué'
'1‘77
I.JS
u9-
‘60‘,
fél
'6T
6a
64

REQ?
BAVE

49
g1

g2

a3

54.

e,

99"

9&

97

98-
59

40:

ENTER FILE NAME?

505A12

£ 194 =

‘STATUS SAVED IN FILE 508a12

RE@I
VLM

(FRECLUSTERING COMFLETE).

ERECLUSTERING FERFORMED AN DISTANCE MATRIX COMFUTEL

C

REQ?

EREL

4LLU&TEH

N
5

- .
G NG O W G T

el g
(8

=
B O

13

ke
: O~

17
18
o 19
b 20

iNO) ORJECTS

-.-.-——-.u.u _--—-n-—--c-—.-q-.-.—u

B N WP T RS 3

e e el alalalalas

e :
HOQmﬂ&mb&st

fy
%

TRy A
E 9 $3

15

-
£~

PRTRS
oo~

19
20

32
33
34

oy g

33
34
37
38
39

TLUSTERS NOT TAKEN AS SINGLE NOLES.

1y B
¢ 1) 22
(1) 23
(1) 24
¢ 1) 25
(1) 26
(& 27
¢ 1) 28
¢ 1) 29
¢ 1) 30
(1) 31
(1) 32
(1) 33
¢ 1) 34
¢ 1y 35
(2) 36
¢ 1) 37
(1) 39
¢ 1) 40

38

49
A1
42
43
44

43

34

47
48

49

50
91
dh

33

Rh £ Up iy

[N

AAAAAAAAA}\AAAJTsAAAAAAﬂ

e N il

1
1)
1)

1)
r

i 3
’f

1

1)
1)

12
1)
K
1)
1)
13
1)
1)
1)

WITH B = 1

41
42
43
44
45
44

47

4%
50
51
52
g3
o4

99

6
57
58
3¢
&0
41

e

- 195 -

REQ?.
UIVN S)
{FRECLUSTERING COMFLETE)

5 FRECLUSTERING FERFORMED AND DISTANCE MATRIX COMPUTED WITH B = 1
b 1 CLUSTERS ‘NOT TAKEN AS SINGLE NODES,
3 REQ$

‘SIMA.

SIMILARITY MATRIX COMFUTELD.

REQ‘

INFA

ENTER: FERQENTQG& FARAMETER S
SELN

INITIAL FARTITION COMFUTED WITH F = 80,00 %

REQ?

HEML *
BEST PARTITION MEASUREY 0,556,
0 YOU WANT TO PRINT THE TREET

NO .

REQS
PROL

{:}

CLUSTER (NO) ORJECTS

0 a2kt 408 T L PP AP AP NS oot St 008 W48 hbe Wb Dok Guge Sah

1 ¢13) 1 4 § 9 10 26 27 28 29 30
31 9§91 85 5S¢ 98
2 (13 a 3 é 7 11 13 15 19 21 &4

. 16 L% 32 33 34 33 3& 38
37 39 41 52 40
3 20 23 24 40 57
(11) 25 42 44 45 46 47 48 49 50
41

i 3 [s%
~~ -~
foey
~d [&5
\,I L g
f N
[% o)
- -
w 3

i
[IM

Ly Tt - SETIRTATIEN
7 3 s T lEre PR R —;fgvz‘fwj 7 ~ o B =
-
- 196 %
CRE@T
HOM2

Bhsr FARTITION MEASURE? 05727
00 YOU WANT TO PRINT THE TREE?
© NG

RER:
PROL

CLUSTER (NO) OBJECTS
i (14y 1 8 12 16 17 32 33 34 35 36 .
38 37 39 60
2 & 7 11 15 18 19 20 21 22
40 43 54 59

-3
~—~
[
Y
Nt
| 51
O
~3

3 (2 3 13
4 (14) 4 5 9 10 26 27 28 29 30 31
51 55 56 58
5 ¢4y 14 23 24 57
& € 9 25 42 44 45 46 47 48 49 50
7 (1) 41
8 (3) ‘52 53 61
REQ}
0IMN

(FRECLUSTERING COMFLETE)

FRECLUSTERING FERFORMED AND DISTANCE MATRIX COMFUTED WITH P = 1
CLUSTERS NOT TAKEN AS SINGLE NOUDES,

REQ?
HEWS ,
BEST FARTITION MEASURE 1,119
DO YOU WANT TO FRINT THE TREE?
NG

REQS
FIRCL

CLUSTER (NO). OBJECTS

———-————.—;-———u.--n-.—-n»--a—

1 (11) 1. 8 12 16 17 33 39 41 52 53

2 é
2122 25 40 43 54 59
i % 16 26 27 28 29 30 31
46 47 HL 5% 58 58
4 (a4y 14 23 24 g7)
5 (7) 32 34 35 36 38 .37 40
(&) 42 a4 45 48 4% 50

R N R

F
HO You-
Yhm
SET FA

39

41

vl

27
29
31

g

Sé
30

58

44
47
10

b
o~

- 197 =

FLFLON MEASURE: 14189
WANT T PRINT THE TREE®

FER AND PRESS RETURN:

] T 2o O 04 S S €4S TS S e P veP TG SO SR G BI0) A U PP TS TS O e Wy

=¥

o e o o i s 1 a1 e ot ottt et e o S

-~

—mm*
m—umamnmug_u-_-anm_{

nle e DAL LS o v s s vt o ot h e e o
4@_7_--~_n_;—_4,;4~*
«——_—uugnnmam—m——__ng}

'

...—n-.m—.——

1 s s e o a0 0 o d o 1 0 1t o om0 ot o s o 1 @

o e 0m m pt n o sey nt h v w o H

4~_”"{~“~~«;

i
'
|
g
i
X

v ot e o S
o 1 e st 1 2 ot ot o S
1 e O 2 o oo 0 ot O 1 e o et e ot g
e | s ot ot s e 2o

—— e e e 3 o s

1
)
1
\
ot e o e 3

t
1
g
i
!
'
]
A
o 48 et e e e S e o s e N
e 2 o s o 0 s s e 2 e S 2 cp e 3

T e Vel M S [- A W ees ma l

<
_~~m~—u* P

o e Y cme G S snt e s v om0 Y '_~__~__u_~-~«*_:

.
et st s i o o 2 ot g e H
~-u~=~—__*q——nu-n—__~_n__ :
o o e e e W s e ke e s v o
m;a&a~§m-~_—-~~=
e o et s o e e H

e 7 5 e e e e e s e et e v e e

- -

3¢ mm e —m e - ——

—-.1_—'—"-—-—————.-.

-——n—-—-—

T

36 o wm m e em em em e Moo e el 36 me e oR Ao e

- o - -

O

- e mm e e e e me sm M e e e e e e e e

L

—— . e G- e T

PRV AN

ey

Tra 4 ksaeat L fam

T4 wmwe

AT,

PREI S

(K 1KY ok LEmm

45 <k fememieeme

I wm s rm s Lt e - - Li ei -

- an -

S
-
t
i
1
1
1
!
1
1
1
1
1
|}
i
i
U
E 3
!
i
i
1
i
i
1
i
1
i
I

I - - .‘.T ———— e wm

COLLAFSED QRJECTS!
(X 1% 34 38
MEASURES? %

~193.500 -187.500 =180,167 ~173.667 -1468.147 -16353,667
© ~158,917 -153.917 -145.917 -138,917 -133,750 =-123,300

-1204250
-880217
"610361
-32.875
~18,224

'?0174
=0+ 344
0.979

-112,500
~-82.,800
~56,278
-31.,5%91
-16,012

"’5&805
0,160
1,051

=109.000
=80,050
~-31.234
~25+806
~12.,8358
=3.277
0.484
0,742

-102,750
=27+717
=45, 653
~23.494
-10.633

~2.350
0.779
0,240

=264 250
-70.300
-40,528
-21.,278

-8 53?

_1 branded

LY

0.?11
0.081

-93,050
-6+ 333
«37,375
-20,155
~74770
~1,070
1,119

RTI 3T BETY T2 973 et Batin A

LUENO

.--.--.--—p-o-.-—-—---——: -‘-n—o-)‘n-l

12 14 17 33 39

3
~~
L
-
~r

N

1

2 3 4 1 ‘
2f 22 25 40 43 94 59
3 4§ 5 9 10 26 27 2

4 47 51 53 56 58

4 (4 14 23 24 57 S
5 ¢ 79 32 34 35 36 38 3I7 &0
& (45 48 49 S0

REQ?
EVAL

STRENGTH: 1.9G54y

COUPLING: 0.8474y

MEASURE: 1.119.
REQS

t

4
/29304972119 13515918r19920921 5225257409439 34937949599910224

29, 30931146747 151955956585 142 23924,57932934735936938937+460542

4548249950/

THE FOLLOWING NODES HAVE REEN REMOVEDS
2 3 4 9 é 7 ? 10:
14 13 18 19 20 21 22 243
26 a7 28 29 30 31 32 34
37 38 40 42 43 44 43 44
49 0 wl 94 V) G4 37 g8

NODES HAVE BEEN RENAMED AS FOLLOWS:
OLD NO. NEW NO.

. 0 D St 4 e S e IS S S v S Do

I3

452

53
Al

O OB LR

-

11
24
35
47
59

13
25
3%
48
60

27928y

» 44y

R R T L

M

S .
e o T I T aan g TR T

- 2007%m

~REQS
oIMN
(¢FRECLUSTERING COMFLETED

NO FRECLUSTERING -FERFORMED; DISTANCE MATRIX COMFUTEDN WITH P

REQ#:
SIMA

SIMILARITY ‘MATRIX COMFUTEID.

REQ!
INPA | |
ENTER FERCENTABE FARAMETER?

80..
INITIAL FARTITION COMFUTED WITH P = 80400 %,
REQ:

HCM:3 S
REST FARTITION MEASURE: 0,091

00 YOU WANT TO FRINT THE TREE?

NO ‘

REQ?
FRCL

CLUSTER (NO) ORJECTS

G U € D WP S PN Y YIS S WD D S D PN D W B

o
-
<
-
3
(1]
Y
[&/]
173
~
w
0

10

REQ?
EVaL

STRENGTH?
COUFLINGS
MEASURE 3

[0909 ’
0.,0000>.
0,091,

1,

r#RE,;G‘:

REST
ENTER FILE NAMES
s08a1

ADJACENCY -MATRIX READR FROM FILE S0SA12:

CREQS
HENO

; ‘
/LBt 2y1691 7933939941 952953561949 5995105269275 28929305319 46 9475
‘: - ., . I3 - . . o - . - N .
S1v55,54958y14923924,575329341359.36,38937960742744,45,48249550/

THE FOLLOWING NODES HAVE BEEN REMOVEDS
1 4 5 8 ? 10 12 14 & 17
23 24 26 27 28 29 30 31 32 33
34 35 36 37 38 39 4L 42 44 45
46 47 48, 49 50 51 s2 53 35 56
57 &8 &0 &1

NODES HAVE REEN RENAMED AS FOLLOWS!
OLI NO. NEW NO

T ek e s O W e M e s W r B v e

[y
O
- H -~
TOQONOU D O

$t3
Py
ey
()

-~
3

ad 12

4] 3= []
G Od w
P e Wy
~N OO0 B O

Y TP s ey

D VN AN AN

- 202 -

oMy o
(PRECLUSTERING COMBLETEY

.

3
K [

L s K

S 0N ARBA T]

AR GO T DD

NQ ‘FRECLUSTERING FERFORMEDs DISTANCE MATRIX COMFUTED WITH F = 1y f
REQY
sia :
SIMILARITY MATRIX COMPUTELr. §
REGS ?
INFA- o | :
CENTER PERCENTAGE FARAMETERS :
80, :
INITIAL PARTITION COMFUTED WITH B = 80,00 X, :
REQ:
HCMZ o ‘ :
EEST FARTITION MEASURE: 0,448 ~
[0 YOU WANT TO ERINT THE TREE?
NO :
REQ? i
PRCL 3
CLUSTER (NO) ORJECTS 1
ro(8 1 3 7 9 11 13 15 14]
2 & 2 4 5 & 12 17 \
3 (3 8 &0 14 ,
REQ? |
EVAL.
STRENGTH: 0.88579
COUPLINGY 0.4375y
MEASURE: 0,448,

- REQ. R
CGREST ’
CENTER FILE NOME?

$08a12

ADJACENCY MATRIX REAL FROM FILE sOsaiz

REQ:
JDENO:
21,8912,16,17w33939,41,52,53,61Q2,3,6w7,11»13gi5,19,19,26,2fﬁ22;35,
40»43,54y5§a149§3,24,57,32334,35,36,38,37,69142,44,45,48,49350/

THE, FOLLOWING NODES HAVE REEN REMOQVED?S
1 2 3. b 7 8 1l 12 13 14
13 14 17 18 19 20 2l a2 23 24
~25 32 IF 34 39 34 37 38 39 40

L AT 4R 4% 44 45 48 49 50 52 53

54 g7 59 40 4L
NODES HAVE REEN RENAMED- AS FOLLOWS:?
OLI NOW NEW NO.

. g S S WS BT SR b W Sl e Wt v

3
o
CSo N WS B Re

£ ol

NGO 2

PLT Py
SR

G4 13.
93 14,
96 13

58 ié

‘.
R A

e e N ARy T

<
B T PRV

L e L

—— - - et b < ik k8 e e
RN

REG.

{BINN
(FRECLUSTERING COMFLETE)

\NQ‘PRECLUSIERINGJPERFORMEni=ﬁi$TANCE‘MATRiX‘CbMPUTED WITH F = 1.

CREQS
+SIMQ ’

SIMILARITY MATRIX ‘COMPUTED,

. ‘REQ}
INFA o
EMTER :FERCENTAGE FARAMETER:
80,

INITIAL PARTITION COMPUTED WITH P = 80,00 %.

REQ:

HCM3. A
BEST FARTITION MEASURE'S 04449
0O YOU WANT TO PRINT THE TREE?

NO

REQ¥
PRCL

CLUSTER (NO) OBJECTS

- o 0P S N e S e Y T WD SR PR SR Db G SRS Sl ey SO

1 (139 1 2 3 4 § 4 7 8 10 11
12 13 13
3) ? 14 16

3
~~

REQS
EVAL.
STRENGTHY 0.5769»

COUFLING? 0.1282»
MEASURE? 04447,

= TR PTG I mai = v = e g oo T g g e g 13
o S IRy B Mn T e v - wae o s
¢ -y E g n hid . e A e~ TSR
e g i - < on G
Y, " .
LA vz

T re———
srerenn Wira s S

I
3
I
!

K

*.205:?

REQ S

EST :

S ENFER FILE NaMES
| sOsALZr

Janqa,csm:x MATRIX READ FROM FILE S0SA12

DEND

.(

"37,49,4“:44,49,48,n9,§of

THE "FOLLOWING. NODES HAVE REEN ‘REMOVELD?

1 3 4 5 . 4 7 8 % 10
W 2 13 15 16 17 18 19 20 21
22 25 26 27 28 29 30 31 I 33
34 3% 36 37 3§ 39 40 4y 42 43
44 45 A& a7 48 49 50 51 52 53
54 S5 54 583 59 40 .41

NQDES: HAUb HEEN RENAMEDF AS FOLLOWSS
OLD NO. NEW NO.

-—.-3-—-‘—;-—-..-————-—

14 1
23 R
24 3
S7 4
REQ?
DIHN

(FRECLUSTERING. COMFLETE)

[

FRECLUSTERING FERFORMED: AND DISTANCE MATRIX COMFUTED WITH F
CLUSTERS MOT TAKEN AS SINGLE NODES,

_REQ3
SIMA

SIMILARITY MATRIX COMPUTEL.

REQ?
INFA ‘ .
ENTER PERCENTAGE FARAMETER:

30,
INITIAL FARTITION COMPUTED WITH F = 80.00 Z.

REQ$
ACM3 _

CURRENT FRCLUSTERING HAS ONLY ONE CLUSTER.

UNARLE TO DO IT. : -

. L . - R
/178¢12y16317'33139)41;52453961h253;6f7&1l@13)1§:18;197 109721922525y
40743!u4!u9v415y9v107 26927928129130731r46+4751 559561585 32,341 35,3462 385

L1y

Bt

k4 ra— . < 3 y -
A N R R R R L :.,, 3@ @ L g e s

Pty Zaadar <
R MR e wea > R A Y A Ao B L i
P . -~ N DAL
o

. ‘ - 2 0,6;' o
JREQY
wHEST

ENTER FILE NAME$
,smsa14

QDJQLENCY MATRIX REAL sEROM FILE ‘S0SALY

- REQ¥
'DENO

%Ly87121T6’L7!33i39!41!5§f§3)61!2:3}6!77@11L3@isk
18919720y 21+22+25r401431541599 41599

L4
K10726527128! 9!30931346147ru1'u 39 % 6958!

14,23,24,57.92a44;45,485493507

THE FDLLONING NODES HAVE DEEN REMOVEDS _
S 3 4 S5 & 7 0§ 9 1w
11 1° 13 14 15 te iz 18 19 20

21 22 23 24 25 2 27 28 29 30

31 33 39 40 41 42 43 44 45 46
47 48 49 HO0 0§11 s 83 4 53§ 96

57 58 59 &1

‘NODES HAVE BEEN RENAMED AS FOLLOWS?.)
oL -NG. NEN NO»

-..-.———-.—-—-— -

302
34
35
34
37
38
60

SO UE DO

RS R A S O S RS

b M e e MR

Aty v

T T r——

n

]
[V SN

3
Ve

E M?M.{\‘?\.a
T

B3

&

E
W2

e 4 X0

p
T——
EIRL AR

=207 = - _:': o

Bl s
ORIV

Srappayt

e REQT
)
o MFRECLUSTERING COMPLETE)

PRECLUSTERING PERFORMEDHAND DISTANCE MATRIX :COMFUTED WITH:

A
A

&

e

"
A

TR

CLUSTERS NOT TAKEN a8 SINGLE: NOHES.

TR

N
‘

‘13
it
[
-

e e

LT A SN o

; RE@: x
: HIMA

SIMILARITY MATRIX COMFUTED, P

CREQS .

INPA . ‘5

“NTER\PERCENﬂACE PARAMETER‘ ﬁg

’80. 4

INITIAL FARTITION COMFUTED WITH P = 80400 %, -

LAD
171
=

T e
AR

.

> ONAN
:Zi
N

S

BEST PARTITION: MEASURE} 0,419
10 VDU WANT T0 PRINT THE TREET
N
() - RE@E : ‘ - :

T L RRCL ~
CLUSTER «ND» BEJECTS

-t Py - ‘e PR -5
T G Mg D U D S et 400 w90 Lol v s g owp Shae

E L7 1 0§ 2 F 4 & 7
A - REQ? . - L)
T EvAL - : .

S EIEY
s

‘
S
55 ot T

TR
AT W, 1,

-2

f
e

B

IR T 2 S T S

T BIRENGTHY 0.&140y : . - g
S0 o COUFLING: o o oy A | ; e
- ,'neasuaazv 06185 o o ST

~p .

3
,‘ LS CoN M s - *
RS CIERERI P NCoPptacciod it thegpinaad o S ks o de

< 208 =

REQ3

RhST

ENTER FILE NAMES
80891”

ADJACENCY. MQTRIX READ. PROM FILE S0sa12

REQ
’IN:ND

ﬁbaBz}2@4@317933#39!41352153?@1%2)3&6v7411943:15v18919:301 1922y
~:

257409437549592475. 95101269 275282297 305319489475 51955,56758
147235249579 32:34+357 36238737960/

THE FOLLOWING ‘NGDES HAVE BEEN: REMOVEDS
1 2 3 4 5 P 7 8 910
1142 43 14 15 14 17 18 19 20
21 22 23 R4 25 28 27 28 29 30
3L 32 33 B4 35 36 37 38 39 40
41 43 44 47 ST 52 53 54 S5 ¢ 53
G758 59 40 61

NODES, HAVE: BEEN. RENAMED AS FOLLOWS

OLIV NO'W NEW NOy
ez 1
44,
45
48:
49
90

O i BBt b

v T varr AT~ G N e w3

- 209 -

- REQ#
TTMN:
(FRECLUSTERING' COMRLETE)

PRECLUSTERING FERFORMED AND DISTANCE MATRIX COMPUTED WITH F
CLUSTERS NOT TAKEN A8 SINGLE NODES.

‘REQ:
SIMA.

SIMILARITY MATRIX COMPUTER.

REQS
INFA 1 ‘
ENTER FERCENTAGE FARAMETERS
80,

IMITIAL PARTITION -COMFUTED WITH P = 80,00 %

REQY
HOM3

BEST FART[TION MEASURE? 0+400
D0 YOU WANTY TO FPRINT THE TREE?
NO

REQ?
FRCL

CLUSTER (NO) OBJECTS

" es > e e e e S O e e " S0 Y 000 ¢ s W8 s

Ly

e A SIS R P—
. : .) . S
“ - i
y - ard
* . , N L]
’ 5 b
K

2

| 210: =

llq-l,‘).} N

P Oy Ty

et

" ot -.‘ *
TNHER T T Mawsy

LT

AT LT MATEORN RYRTE EROM

el v ~t.‘ll‘ LY :"l... n\u.i

HO8AL3 '

A

3% i L

rqd v
a5
~

PRI

R Srey, , ey :
s 1 DRI l, ¥ .53 o t"' “ ‘3 [R A A IS LR, 1.-\ » él-’

%

=
=3
Faew

e

-
SRR L P ekl P S X1 g
9
3

3

BoTatd AR Q. 50/ ;
1

- 3
SR A i
b L VLD Staie I LW e '
* .!....,"., RN P :
« §
- 1

TN KAy B2 R F 73R 40/ ;

G AN A% ARt 49050/ ‘

AnZa e i 0w 2R A7 v 2R 2P F1o 4G 0 A7 T 0T

oo hun & abey €

: '
A N
AT MRk :
1
RGN :
bkt .
SITEE MDY RNJESTR) E
. .

et e e e e o e et e st e o
1. : i
: (L s CR 4R 1l 17 330 3% m» o oHY .
&l ;
§ Do) IS N R - T 43 4 :
= { &) A7 iy o1z 2w ;
2 O3 1B AN A p
= R O - - :
. Svnp pme e » %
5 Trooa® 4 3% %4 37 38 40 ,
o ¢ &) A2 44 A5 4R 49 S0 , 1
° 1R A5 9 10 R4 97 2E 429 31 A4 ;
({‘ ? 1..! I. \..' Lo ’
@ O S T (o A g
‘
’/

e o e s e e . i e S e
= — y—

L e
L4 Tl A N A - B T L R Muuwu‘w,«:m he e w
A 2 T e T
0 5
B
. . g
\ -
: i . N ol
S
R N
. > 3
. 7Y
4
. Ty
s] :,:;
= . yen p. - oo oy s RER
BT SN n..Uf:. g X B
ot . . B .
. L e . Lt e
Ty
- & . 3
vy s
- 2 <
o g , .
al S & !
- i
. } i 3
:Uv'\ YN oo W el g o [} -y w .
STHEEH CLUSYERS 1 0% X g)
o oo
- BY . A
LU N :
fn U!" r..... (:} 1. LX1 4‘ & .
1o . 19 :
A do 3
i
o e ot oo | Y oy o o - o A3 Hole X) ‘
SETWERN GLUSTERS 0% I
N 1A
oy ey N
e pu '
"
"t 4 't‘ Y “»‘: !
. e
- .! f\«!‘u nt A 1 A§ o 't
-4
" s g !
v R
w e :
- e .
s :
i fLra) ° ¥
-y *
e Y 4
- <
(¢ :
¢
PR] - N
() *
- M
L
R H
H
- i
» i
- L R
s Al M
- ¥ i
. . g rey 4}
S m - - #
“w % Tan 7
oy vy 5
‘nn‘-:?‘ " \: ¢ ¥
[P TRCEY AT MY A [e T 2 - :
MM DHTTWITEM O s TEns 1 7t :
S
B
e iy g R L e v o, .
LTS GETRITIN O S TERS L& i ;
1 e 4)
r son 1
o= b ;
" - = Je
A (W3 5
") .
oo ¥ ;
I ey N
P .1.'.’. \3 i
. - E
LF - El i
EO-J- e i
1 - (PR b
oy " £
B - h :
z N i
’" 1 3“ ‘-\ oM l-p_s.'\n W\,‘\ - 2 “ @ .
PR [
Y
N g ¥
.o et <
L S e .
E DO B ! :
A% }
: s 2 SR A 4
- & ‘\
» H
]
E!‘; M
3
3 §
R M
2 i
> g%
- s e o [y Y B 4 o e s amaeds e S

A r e T

T

:'; T :“!“‘.}!S; !..-l.\‘.\
10
LR
T - ETWERN vy
LIMRE RETWEEN DLUSTERS
W% - f{l
G4 - 14
T Y
LIMER BETWHEEN COUeTERE
AT
LEses RETINIEN CLUSTERS
A A
. &= B
Rt R 42
"y . . o
.\.: - :‘.C—‘
R
L
‘:’-S. e 41«
[R — am
LIMKE DITUREN SLUGTIRG
-
R Q@
4 - 3
. "N
- £«
10 .]
e 4
LINKE TETREEMN O eaTERG
LY e foal
.;.E - wd bt
Sa4 - 65
- 0 e
TNRS CLUS TERS
LT g
o
I B
|CoL i A,
s M
LOURE SETMERM LLLGTERG
- -y
s
' oxwe I '”\-\»-“H.-'\
EI e o - ‘n
€

?
a o
“ =
2o
i‘—: ul
" ?,
o 3{
" 3
-'-’ (&4
-0
- [y

xR
o Y
.
- g
et

2 28

5]
-

U3

D = N
s Ay v e

s

By

ANy gy i vy s s st

%

P

e

s 5%
ekt s i s

N e s

N

se e o

bt

T

gt
LINKY

VR
LTI

LANKS

> ftvm
R

L g i ay

-uw- +

RHERT N

KT
LATRGG

MR
BURIRY Y

.«

s
!.}\': st
YT
[P KW

1M n
LM
1ot g o
"‘: l?‘l"! 2
TIAML

TR B

Vo er € D am e

RE PR

rr"(.‘-. \' ‘--.T \

Pl ! L)

TS M
k !

.‘. '.«--«, '.. HEN

[

e &

2ETESN
ThCYLIKE

ke A

BETRIZEY

?PTMJQH

RO S L e
- P

- 3 «r----p.‘ "
LT .5

" e
»
7 -
K

Druaremy
a7y

e ‘l_j('.‘"l’"f:".’;:\(f

Sad®* ua

T e
Ve e
™ e

CLUSTERS.
"!0 ¥ 23
40 - 24

PURTERS

B A% -

a0 -~ X2

PG VERR

LT

CLugTERg
40 =~ EFQ

(.") r‘-....,q

tdan L

27 - %0

. - [Y Y
g
o Ba '\ €
£y e e
o4 33
)
- E4

PUNT
(LIRS
DERS

CALUSTERR

9% - A
23

o -
R
2 - Wl
s »

24 =~ 4
24 - ol
2 Y - 1

t '5""} et
IR Nl Bl L e}
won e
[V, LA

v 4 Gane ama van, weh
i) lly\ vl
N

X

ny
“

ot

A %

i

4

5

.

L
!

-

-

3

7

"

2=

£

i

»

X

<+

-

Aeny

o

-
.
RN A

< otn P SR

s
U N

Ve e e T

E P

R

- v - s foniosen {
|
B 1
. ' $
% . = . ;
: i
3)
. _- -~ v %
. - 214 = §
F% T d
- ¥
i
Lo MR CRETRESH 0L UGTERSE 3
e Q. !
. R e &
: . i 3
‘ e 2 3
: N - - - Ol ji:
- . - d v g
N &
PR o e -y “pn wape gt you, .. 8 :3
‘ LSS BETHEEN CLUSTERG & { g
' . i T ' g
ACNIE N
2 B ES
irNRS RETMEEM PG T) 2 8
, LINKS RETWEEN CLUSTERS 7 3 . %
] - ‘b\ 3
N v 3
“ = 4e
- él?n ;':
- A7
8 A
i R
POTNRLS RO TIITEAL P DTG . :
. LINRG BETNEEN CLUSTERS 7 H ¢
g MONE H
")
Vet TIETLITE R [NCR , :
Loz RETRESN CLLISTERE i :
R d :
Qb - HE
a7 - 30 :
o . I
eZ'..'; - 3\) ‘i
- Ll - » ~
\Jé " \50 :
(G - 55
)
) ~
:
b
e
3
<
%
;
.
.
.
e e
(;
o

ot SO BN T N LR A T vy e ey i 3 T Y T

< 215 =

APPENDIX F

Main Subproblems Resulting From The
First Iteration of The Decomposition Analysis

Note: (11) The number in parenthesis indicates
the number of interdependicies
identified for the requirement.

iy

Fader Al
WA RN S PLE DR

TR A frve ¢ PurgoR

4

S48 s E I

A Al s s

iemn” S

o

[T S

i

T .
RIYEY TNE V7 S L N

T T

H

X

3
3, ‘A
&
¢

“

%

¥

- 216 =

Main ‘Subproblem 1 Multi-programming Support Functions:

5 (I1): Operating §¥stém‘hd§t"prévideuawmultiéﬁxégéﬁm%

16 (-

20 .

21

37

43
45

56

57
65

(12)
(1)s

(3):

(2):
¢ 4):

ming environment.

Operating system must protect user jobs from
e§§h~oﬁher; ‘

-System process ‘routines are re-entrant and
shared.

Jobs are scheduled strictly on a first=come,
first-gerved basis.

Job :scheduling function must be modularized so
that improvéments to the systém carn. be easily

accomplished.

Device handlerAroutines'must.support multiple

job 'streams from card readers.

P=V mechanism must be provided.

P-V operations are available only to system
processes.

éyerating system must accept input data from the:

user's job stream.

‘Supervisor process must load the user's program.

‘There exists one supervisor process per ‘job

Main Subproblem 2: Process Management Functions:

M5 2A: 'Progess Creation and Scheduling.

6 (14): The operating system must be process oriented.

ctibduare o d

Lol
lrlasind Hondsi’

i o

ey

[R Rt ciepe

10

19 «

23

25

29
47

58 (10):

217 =

A procéss must be ready to run prior to being
allocated to a;pré¢g$§Qg@

Initially one proceéss is created for each
user's job.

Ready processes:aré scheduled in simple round-
robir: fashion.

‘A process .shall be blacked while awaiting
'synchronization with another process.
Reference to a process is by symbolic name.
The message facility must be accessible to
all processes.

The user process may dynamically create and

destroy other user processes.

2-B Process/Operating System Interface:

7 (4):

1l

15
- 17

26

63

The operating system must rin a machine that
has two states.

User communication with the operating system
is via SVC instruction..

SVC instructions are user callable.

SVC instructions are executed in the super-
visor state.

A process shall be blocked when it specifi-
cally relinquishes control to the process
scheduler.

User processes must schedule completion.

.

PR SRRIEIC PNOE SE- PR AN SO SN TI T TRCAW AR S IRV

RN

MS: 2-C ‘Proceds Time-Slicings
27 (6): The traffic contréller must time=slice CPU
‘usagewtpﬂachievevmultidprbgramming.
24 (2)i A process shall be blocked when a timer run-
olit trap is detected..

44 (10): An intefrupt handler must be provided.

Main Subproblem 3: Resource: and Memory Management Functions#é

MS 3-A Resource Allocatiofi:
8 (10): All resource requests must pass through the
supervisor.
9 (8): System resources must be allocated to a job,
prior to the job being made eligible to run.
13 (12): The operating system must utilize information
tables to monitor and controi processing.
14 (4): System tables can be.dynamically allocated
.and released.
30 (9): The operating system must allocate memory for
job partitions the size of which: is
specified by the user.
31 (7): Memory is allocated in 2K blocks.
32 (11): Operating system must dynamically allocate
memory. .for itself.

33 (-

N
~
LYY

‘Memory is allocated using a best-fit algo-
rithm.
35 (7): ‘Free storage areas are collapsed into

continguous blocks of memory whénever a

g e sy AN D e b R0

- 219 =.
partition is freed.
50 (2): Messages are of an arbitrafy yet specified
lengths,.
5L (5): Any number -of messages may be gueued.
60 (9): User processés canrot dynamically allocate

Memory.

MS. 3-B Protection:.
34. (9Y: Memory must be protected to prévent the
simu;tanéous allocation of a partition to
-multiple- jobs:
59 (7N): Dynamically created processes must run in the
same partition as the parent job.

62 (4): The user processes run in the problem state.

Main Subproblem 4: Supervisor Process:

18 (6): Supervisor process must create and delete
the environment in which a job runs.

27 (10): Supervisor routine must reclaim all system
resources when a job has completead.

28 (9): Supervisor process must reclaim all system
resources when an error .condition abnormally
terminates a job.

61 (6): User cannot destroy system process within

the same process group.

Main Subproblem 5: Device Management Functions:

36 (16); Operating system must supply a device manage-

- 220 -
ment Foutine:

38 (10)y All devices are allocated.
+39 (9)s fDeViée,handlér‘rbutine~suppo:ts~éne card u
reader/inpit stream. :3
40 (6): Device handler must support one line prirter/ »;

output stream.

MV D e ST T

41 (8)r I/0 devices operate via multiplexor channel.
42. (7).: THe user .can provide his own routines for 1

non-standard devices. 1
64 (6): The user's job can reference 1 input, 1 output, i

1 exceptional type of device.

Main Susproblem 6: Message Facility:

46 (12): A message facility must be provided.

48.(5): The name of the sending process must be pre-
£ixed to a message.

49 (7): The receiving process must read the name and
text of a message.

52 (2): All messages are released when a. profress
terminates.

53 (4): The receiver of a message may destroy the
message without acknowledgement.

54 (5): 1If no messages are available to a process which

expects one, it gets blocked.

e e e B I e e R AR A MR L PR P T E NN A em et v . el st o e A omaa e Rrmmags v LGt L E n e

& Ao L

g Jrovoesss N ~ g N . s v -

K

e S
O

AT

TN

i
i

SRR

ion

t

inl

E
3

221

Gl
I

APPENDIX G
quirements Def

T

g r e e
: -
- i

Final Re

A,

P

:HM c,.:w, YRR

x;.a..: L .én_: Pz xk...:w» FIE RN,

v‘n .v\\.

. =N o7
- .o 3
SOV o %

S BT L

- 222 -

I. Design: . PHilosophy

1.

The operating system must be simple, implefienting

DEFINITION: The operating system is to be simple
in the sense that it is to implemgntaoniy those

features most essential for learning the funda-

mentals. of the operating System. Therefore, the

system is to implement a basic system nucleus
to include the following features:

=== Multi-programming;

--=- Basic multi-programming support;

-=-=- Dynamic memory allocation;

--- Device management;

-~~~ Simple top level supervisgr;\and

--~ Traffic control.

IMPLICATIONS.FOR DESIGN: The nucleus does not

include the following:
--- language processors;
--~ utility programs;
-== gpooling;

--~ file systems;

—~--= application packages;

-~-- debugging facilities; and
--- subroutine libraries.
The operating system must be designed as a peda-

gocial tool.

SN
T

e
N ORI ¢

e e an 7

- o L e L N o Sy M,,m,g
R A O T T el T R R S i - R L ST . Lo Y e

3.

described, the heirarchical operating system

4 223 - ‘ ‘f

DEFINITION: Since the dperating system is to be
used as .an instructional tool, -simplicity and
easy identification of thé major functions are

the objgctives of the design. As previously

structure enables:

~--= @asy identification of the relevant sections
for processor management, memory management,
and. device management; and

-=~ identification of the well-defined inter-
faces between the various functional
section.

IMPLICATIONS FOR DESIGN: The design concepts of

extended machine instructions and “eirarchical
operating system structure have been selected;
as the optimum method of 'satisfying the design
objective.

Also the pedagocial c¢": ity of the operating
system is preferred to performance.
The operating system must be prucess oriented.
QEFINI?ION: The requirement is vague as it
gstands, yet it recognizes the fact that there
are certain requirements necessary to support a
process. The following entities exist within

the system:

--- job stream: sequential;

3
I 3 % o, TSt g s o)

PIPTE T

FEA o

FLC

* 224 - ~

<=~ job: collection of activities needed to do
‘the work required;

<=~ process groip: processes belonging to the
same job; and

=== process: a: system-created entity which is
the smallest computational entity with which
the system must deal.

IMPLICATIONS FOR DESIGN: Thérefore, the opera-

ting system must provide certain basic functions
by the extended machine including:

=== P=-V operations;

<=~ basic multi-précessing support; and

=== traffic controlling.

The software functions can be thought of as being

executed. in the same way as hgrdWaré instructions.
Again, the basic functions represent what the
operating system must accomplish; the extended

machine implements the requirements:

I1I. Design Constraints

4.

The operating systém must be small; occupying
fewer than 2500 cards of assembly language state-
ments. -
DEFINITION: It was not clear from fhe system
description that the requirement occurred “post
hoc, ergo propter hoc".

If, in fact, this was a design constraint

then it must be analyzed in conjunction with the

- 225 =

IR\ Sy

requirements for simplicity and a basic nucleus.

Clearly, adding more simplistic capabilities to

the system. incréases thé rnumber of assembly ;

language Statéments and at some point, would |
conflict. It was assumed that since the actual
operating system deck 2500 that this require= ,?
ment was not significant. %

The operating system is to be implemented f

utilizing IBM System/360 hardware.

DEFINITION: This simple requirement has far-

reaching significance for the design; specifi-

cally; the hardware constraint has implications :j

for the following functions: .

--~ IBM/360 is a two state machine;

(problem, supervisor states identified)

--= Protection is provided in 2K blocks;
(protection must be provided to match memory,
allocation is in 2K blocks)

=== Interrupt mechanisms are hardware functions

which dictate what sort of interrupts are

I

recognized and how they are processed.

IMPLICATIONS FOR DESIGN: Since the guidelines

for defining requirements called for indepen-
dence among requirements, it was not clear if
the implication of the constraint needed to be

stated explicitly as requirements.

- 226 =

Y Jﬁ

B
™

since the design constraints were not
assessed with ‘thé remaining design requirements,.
it was decided to draft the implications of the
design constraint and to :include these in the
assessment .process.

6. The input/output devices are limited to card

reader for input job streams, and line printers
for output.
DEFINITION: This was a design constraint,
imposed "a priori", ,which,limits(goth the:
flexibility and complexity of the operating
system..

IMPLICATIONS FOR DESIGN: This requirement

reduces. the variety of hardware and, therefore,
the scope of the device management functions of
the operating system. The impact of the.
requirement is specifically written into

subsequent requirements.

III. Design Requ;remépts
7. The operating system must provide for a multi=
programming environment.
DEFINITION: Multi-programming - multiple job
streams from different sources.

IMPLICATIONS FOR DESIGN: The operating system.

must have the facilities for:

-=-= input stream interpretation =- those

333

, T = S|
. t?ﬁ?ﬂ?ﬁf‘?ﬁ‘?ﬁ?"ﬁ?ﬁh:ﬂﬁ, - » Rt 1

= 227 =

functioéns. which delineate jobs and job-steps;
=== job, control - those: functions :of the operating
systém which cofitrol the processing of a job
in the system; and
-=- job scheduling - those functions: which pre-
pare a ‘job for execution.

Limitations. on Multi-programming: There must

be some sort of a limit established for the

number of jobs that the operating system: can
handle. In fact, the system is limited by:

1. 15 protection keys;

‘2. the number of I/0 stream must eqgual the

number of devices; and
3. the amount of memory available. '
The operating system must. run on a machine that
has two :distinct states.
DEFINITION: The two states are problem state
and supervisor state. This requirement implies
first that user programs execute in the préblem
state, 'and second, a processor can correctly
execute privileged instructions only in the
supervisor state. Privileged instructions
include requests to:
--= change the state of the machine;
-~~~ gtart 1I/0;

—— change the protection rights of memory; and

oeio

o X B0

Gre ¥
W5
N NP

<=~ .change the interrupt states of ‘the machine.

Since ‘the operating $ystém includés the imple-

mentation of theé extended machine concept;

these instructions may take advantage of the
dual state machine by making system. routines
unavailable to the user and, therefore, only
certain séiected»rdutiﬁes are user callable.

IMPLICATIONS FOR DESIGN: Therefore, the

operating: system must have the capability to:

-=-= distinguish machine state; ‘

=== identify privileged instructions; and

--= identify user=-callable extended machine
instructions.

All resource requests must pass through the

supervisor process.

DEFINITION: The supervisor routine is a top-

level process that establisheés the environment

in which a job will execute. Initially, all

resources required by a given job are stated

explicitly on JCL cards. The supervisor routine

cooﬁ&inates.requests for resources prior to

‘creating a process for the job.

IMPLICATIONS FOR DESIGN: The tasks which the
supervisor must perform are as follows:
--= allocate memory;

--- allocate devices required;

b o mrms s oy s = L. - .. B R B T S N

2

LT s e ran BT RE S R B e ONGEE pin

e i o

F P S e

A ree R L ows eFae amaeneds

- 229 -
o8 Py i
@ ﬁ:} «=-= read the user deck into his partition; v it?
§ --= start user process; and ; ?
% -==< upon completion, reclaim all resources.) ;
% 10. System resources must ‘be arlocated to,a‘igg 5 §
g prior to the job being made .2ligiblé to run. ° é
\é DEFINITION: The specific resources consist of Eﬁ%
i} memory and input/output devices. ' é
& IMPLICATION FOR DESIGN: These resource allo-
3 cations are made at a job level. There gre other é
E resources which: are allocated. at. the :process. f%

% level. xé
j' 1l. A process must .be ready to run prior to being /E
i =t allocated a processor. é

.Z (w} DEFINITION; Resources required at the process j
fi level consist of only the processor. \g
f IMPLICATION FOR DESIgN: Since resource alloca- ﬁé
fi tions are made at the process level, there must E
? be a traffic controller routine to create a /é
? process~-oriented environment and the system must E
- have some means of determining when a process is %
3 not eligible to run. é
‘ 12, User communication with the operation system is z
via special call. E

DEFINITION: What need has the user of communi- é

cating with the operating system? Once- all the %

é

(..

4

13,

14.

- 230 =
Tesources are allocated, must there by any
communication? These questions requiré the user
to communicate with the operating system:
--= greate a process;
«== destroy a process;
-~~ halt job and signal supervisor;
--= find' a PCB 'given its name;
-=-=read a message;
-=-=~ send a message;
===~ gtart/stop .process; and
~-= abnormally terminate the job.
IMPLICATIONS FOR DESIGN: The operating system
must take action based on the user requests.
The operating system must protect user jobs from
each other.
DEFINITION: Protect in this sense means to

prohibit unauthorized .access to memory locations.

IMPLICATIONS FOR DESIGN: For purposes of this

system, a separate supervisor process exists in
a separate process group for each job stream.
There is no communication betweeq process of
different jobs; therefore, théy essentially are
invisible to each other.

The operating system must utilize information
tables to.monitor and control processing.

DEFINITICN: The operating system must maintain

s
b WEE

15.

% 231 =

information ‘on & varying numbér of jobs,

processes; and: résourzes. This requirement

attempts to identify the table and thereby mini- .
mize proliferation and redundancy of system

information.

IMPLICATIQNS FOR DgsxéN: The following informa=-
tion tables exist in the sample operating system:
-== pucleis databases;

-== process control block -~ one per process
containing save areas, used by the system
routines for storing the status conditions,
and semaphores;

-=-= memory - free storage blocks;

=== processor management -~ message facility; and

-=-=- device management - unit control block
stored in a permanently allocated area for
every unit.

Notico ‘that as previously stated,“the<emphasis

for all transactions is at the process level;

therefore, the process control block contains
most of the system information.

System tables can be dynamically dllocated and

rcleased.

DEFINITION: System tables refer to those tables

built and maintained by certain system processes.

These tables include:

L T P Ty

ORI, .

— ,.
! .
sovabe Sl .

s 1 ”
R R

et g AT S L B

e vanind

vl

PEITAPYRt AR

o alanem e

ok doeilS

SR e N LR T A

- 23‘2, -

=== process cortrol block; -
---: semaphores; ‘ i%
-~~ free storageé block; -

=== message; and

~== unit control block.

iMPLICATIONS FOR QESIGN: The operating system ¥
must ‘be capable of dynamicdlly allocating memory o
to itself for these tables.

A possible deadlock could occur at the point. 1
of a user's program which consuméd all of memory:;
namely by continually writing messages. The
system has no built-in limiting functions to
identify such overrun cénditions, %
Certain system routine$s are user callable.
‘DEFINITION: The nucleus routines are the SVC
instructions of the extended machine concept.
Some of the routines allow unrestricted memory
reference and, therefore, are not available to
the user.

IMPLICATIONS FOR DESIGN: When an. SVC instruction

is issued, the handler routine must check to

see. if the operation requested is, in fact, user-
callable.

System process routines are .re-entrant and

shared.

18.

19.

- 233 =
‘bE?;ﬁim;ON; System process$ have -only one copy
resident in the system. -Therefore, they must be
efficiently shared in a multi-progzamming
envircnment. Pure procedure .operates only on
variables in registers or in separate data seg-
ments associated with the job.

IMPLICATIONS FOR DESIGN: The need for pure

procedure is driven by the need for a multi-
programming environment. The system can set
locks through the P~V operations to prevent

rac¢e conditions.

Extended machine instructions are executeéd in the
supervisor state.

DgFINITION: The extended machine instructions
along with the normal hardware instructions,
comprise the nucleus of the system. éVC\handler
is used to activate the extended machine

instruction and transfér between loads.

IMPLICATIONS FOR DESIGN: When an 'SVC instruc-
tion is issued, a supervisor call interrupt
occurs and control is transferred to SVC
handler routine. Thereforé, an SVC handler
interrupt must be provided.

The supervisor procdess must schedule jobs and
prepare the jobs for execution.

DEFINITION: Thé supervisor routine initially

@ 2ot

FURS NN

T AR L oa

o SR

o

B)

o i et e

ST e A T cee ’«“4';,!"5

a4
5

< 234 &

credtes a process. ‘The user ‘may generate His

own; processés by SVC instructions dutring

execution of his ‘process group. This réquire-

ment deals only witlr establishing the USER PROG

and not with specific resource allocations.

IMPLICATIONS FOR DESIGN: This requirement is an.

-exXplicit statement of one of the functions of

20.

21.

the supervisor pi.cess. The following instruc-

tions apply:

-== a non-system process cannot Stop a system
process; and

-== 3 process must be stopped pfior to its being
deleted.

Initially one process is created for each user's

job.

DEFINITION: One process is: created by the

supervisor process after all job level resources

have been allocated to the job.

IMPLICATIONS FOR DESIGN: The user must create

any additional processes desired on his own.

‘Jobs are initiated strictly on a first-come,

first-served basis.

DEF;NITION: Jobs are read into the system in
the form of job streams from card readers.
Jobs are accepted into the system as long as

gufficient resources exist. Since there is no

Hoav,

e B At gt 110 Uy S LT o Rk s iy g o 1 s b L s o o Ak i, gk e e o ky 2 NPT TR R maedndes e T

T A TT e

22.

- 235 -

sp&oling capability; a job cannot be copied in
the system. Once' in the system, user jobs are
redefined in procéss groups which contend for
the processor in a multi-programming environment.

IMPLICATIONS FOR DESIGN: The supervisor process

must determine if it can schedule a job before
reading it into the system. |

The supervisor process must be modularized so
that improvements to the system can be easily
accomplished.

DEFINITION: The system description indicated
that sophistication of job scheduling is limited
by the brevity of the implementation. There-
fore, the system could easily be extended to
provide more :advanced features and facilities.
Modularization of the function was critical, not
for pedagogical clarity, but to provide for
system improvements.

IMPLICATIONS FOR DESIGN: Although modularized

design was emphasized as a design philosophy for
pedagogical clarity, it is now emphasized to
allow easy improvement. This function should be
designed incorporating interface features easily
adaptable to a system which will implement

advanced features such as spooling.

R

SRR PR AN O

B o S o

TR T PR I g W R ST S e o S <
SARIRTRE ST AN S A e - J M

. S S B By 2 S
e " R e Qg B e iy g T rea)
NS R e SN M R ST T R TR A !

- 236 = :

23. The process. scheduler must time-slice CPU ;

usage among ready processes to achieve multi-

Sra i s a7

programming.
DEFINITION: Traffice controller resides in the
prOcess.managémeﬂﬁ, lower level, and enables a
process to run until a certain time gquantum has
elapsed; at which time; the process is stopped
and another started. A process is ready when it
is not blocked or waiting for the completion of
. some external event such as I/0 operation or for ;
a message from another process.

IMPLICATIONS FOR :DESIGN: The traffic controller

schedules ready process in a round-robin fashion.

Interrupts must be enabled to identify when a

process:

~~- exceeds its time éuantum;

-=-= becomes blocked; and

~--~ relinquishes control to the traffic i
controller to await the completion of an
external event.

24. Ready processes are scheduled in simple round-
robin fashion by the process scheduler.
DEFINITION: Round-robin scheduling means that
processors are Sequentially scanned until a

ready process is: found.

= T T et
o iyt AT) Ear T S A R SN VRS
PSS IR A R Y TR I e g e T " . 3 T

MR LT g SRR D N S TR T

L aan

PR

o
Salnhenm

.= 237 -

BRI . 2

IMPLICATIONS FOR DESIGN: The traffic controller

must maintain a current list of processes from

s . .
Lot e Entosathzdow F xa wrl

which to select the next ready process.

FERUTE SO

25. A prgcesérmust be bléocked and control released
to the process scheduler when a time quantum of E
50 ms is exceeded. : A

DEFINITION: Timer runout trap must be indicated

when é‘pfocess'exdeeds its time quantum. By ‘%
blocking a process is meant that it is ineli- :ﬁ
gible to run temporarily. &

IMPLICATIONS FOR DESIGN: Interrupt meclianism

must be provided to detect a time runout. ,g
26. A process shall be blocked and control passed fé
to the process scheduler when the process must é
wait for synchronization with another process.
DEFINITION: Multiple process creation may
require that one process await the completion of ;
a previous process in order to run.

IMPLICATIONS FOR DESIGN: Some mechanism (basic ;

primitives) must be provided. for the synchroniza-

tion of processes.
27. A process shall be blocked and control passed
to the traffic controller when the process :

specifically relinquishes .control to the process

scheduler.

DEFINITION: A user process may actually finish

28,

29.

- 238 =~
execution and relinguish control to the traffic
controller.

IMPLICATIONS FOR DESIGN: UsSer process must

signal termination stop process instructions, -or
abnormal termination.

The supervisor process must reclaim all system
resources from a job when the job has completed.
DEFINITION: Reclaimation of resources is
accomplished on a job level, since processes

only gain the use of a processor.

IMPLICATIONS FOR DESIGN: This requirement

implies successful completion of a job; there

are such things as unsuccessful completions.

The supervisor must at this point:

~--- print a message on the printer;

--- destroy all processes created for or by the
user job; '

-=-=~ free memory partition, and

-== move on.

A message must be available to signal successful

completion.

The supervisor process must reclaim all system

resources when an error condition is caused which

terminates processing for a process.

DEFINITION: An error in one user process which

reaches the supervisor level, is capable of

PN

ey ML BEER FR T AR, e i ok Se %0 0 2t VPl 405 e

ST S ek

Y

30.

31.

- 239 ~
terminating processing for the entire process

group.

IMPLICATIONS FOR DESIGN:

---~ certain error conditions must be defined,
remember that this system does not have
debugging facilities;

--- the supervisor must perform the same func~
tions as in the previous requirement; and

-== .an error message must be provided.

Reference to processes withiﬂ a process group

is by symbolic name.

DEFINITION: In order to communicate back and

forth user processes must be able to identify

each other. Therefore, each process is given a

name by the process that creates it.

IMPLICATIONS. FOR DESIGN:

--= @ach process must be named by the process
‘creating it; and

--= each process must have a unigque name field
in order to identify it.

The operating system must allocate memory for a

job, the size of which is to be specified by

the user.

DEFINITION: The operating system provides

routines that will allocate a block of memory

of a given size and givén address alignment

ol

oy

= 240 -

using a best-fit algorithm.

IMPLICATIONS FOR. DESIGN:.

--- user must specify the job partition size
required by JCL;

--~ the operating system must maintain a list
of storage areas, accomplished using free
storage block list; and.

--~- a queue is established for those jobs
awaiting memory. _

Memory is allocated to a job in contiguous 2K

blocks.

DEFINITION: Partitioned allocation for user's

jobs is a simple memory requirement scheme

which facilitates multi-programming. A block is

a uniquely named group of words whose addresses

are contiguous.

IMPLICATIONS FOR DESIGN:

--- the user must specify memory requirements in
increments of 2K; and

~<=- the operating system should allocate memory
such that the amount of wasted memory is
minimized..

The operating system may dynamically allocate

memory to itself for temporary work space or

traffic areas for system processes.

L SEPTT TS
SO AR ACK I Ph

B .
R R SR A5

..\.‘
;
EM‘L

- “ ’
et eEer e Cannt m e S o e A i 24

e\
< ‘xs_‘.«\.‘.;..... L N

Loy et

RAN TN s S 1 B famya e v s

- 241 - M

-

B T (VG PR VR SRR

DEFINITION: All system tables and system
processes which do not: run in the user's process

need tgmporary%memoix‘arlocatgd:to them.

FIEEN
[P T0 LSRR

s
Por Y

Dynamic: memory allocation means that partitions

are created as required during processing. The

operating system may use these areas for:

Il o -

--=- work space for system processes; oOr
-+~ temporary buffer areas for message storage.

IMPLICATIONS FOR DESIGN: Tables must be main-

tained,testiné free and allocated storage areas,
usually usinc a chaining method to faciiitate
the dynamic nature of allocation scheme.

Memory is allocated using a best-fit algorithm.
DEEINITION: The memory allocation algorithml
cycles through a free storage list, which is |
arrariged in ascending order, until it finds a
block large enougﬁ to contain the requested
area. In order to minimize breakage, the
allocated area with the specified alignment is f
selected as close to the beginning of the block J

as possible.

IMPLICATIONS FOR DESIGN:

=== excess memory is re-linked to a free storage
list whenever memory is allocated; and

--- a free storage list, arranged in ascending

order, must be available in order to

LTV
RPN
T TN £ S SPOMU S DRI OL T SV

35.

R D, q s
R L N I e e R R ST e DA Pyt e

accomplish the best=-fit scheme.

Memory must be protected to prevént thé simul=-

_taneous allocation of a partition to multiple

jobs.

DEFINITION: Memotry protection is a hardware

function in the IBM System 360. Each partition
is assigned a protection key (1 through 15).
The "0" key is reserved for the operating
system. Since the hardware actually associates

the keys with each 2K byte block of memory,

'partitions must be multiples of 2K, and all

locks within a partition are set to the same

value. Access control functions are those

functions which protect an area of storage
against unauthorized acc¢ess by:

--= insuring that all storage references by an
executing task for thé purpose of writing,
executing and/or reading in that storage
are are legal; and

--- provides a task from modifying areas of
main stotrage beyond the limits.

IMPLICATIONS FOR DESIGN:

--- protection keys must be assigned and set when
memory is allocated; and
--- partition locks must be tested prior to

allowing access to memory.

e

Vo dianifd

R
b s S i,

e TR s LN

el e e
i ada L v

xi
B

K

SR
R IR, SRR AT i AT F S

hes
Fre

L
e B

SNA Y- AN

e SIS SV PSR

R T

% el

DI T A

<

£

s S e

Tx
3!
3

7 D RN ML i B 2,

@
ke e AN D At

36. Free storage areas are'gqllapse&~into'éontiguods

AT S AT,
. A .,
it e Dk TN D ke Vsl 4

‘g blocks of memory whenever a job partition is
g freed. %
DEF;NIfiQNé Since memory is allocated in con=- %
tiguous blocks, the operating system must re-) é
combiné memory partitions and update its list %
of free areas. g
IMPLICATIONS FOR DESIGN: Memory is to be :
regdﬁfigq;edrand the list of freg space updated * g
and ré-ordered whenever a partition of memory %
is freed. | ?
37. The operating system must supply a device manage- :
(:E ment system which runs as a separate process, z
] -one per device. ;
géginTION: The device management system: ;
--= provides the routine necessary to issue the ;
I/0 commands; ;
---~ monitors the. I/0 devices; and
--=- interprets the status information when an %
I/0 interrugﬁ occurs. It must also maintain i
interfaces to process manageméht'inter;gpt ;
handlers and event monitoring functions. é
IMPLICATIONS FOR DESIGN:
-=-= management system can use semaphores as locks
against two processes simultaneously
(»\ ;

PN T TP e S g N s O R A i e e T LY SaarRaE v Sy i e N R T e T T e g

>
N
R wiilews

- 244 -

¢

xS T ST
s }'.‘réﬁ,,,.ﬁz.ssa 2l

attémpting to access the samé device; and

U0

==~ the fielding and handling -of input/output

Y aked

interrupts are performance by a special I

b iarara M .

routine that is involved whenever an I/0
intérrupt occurs. It runs for a very short
time, just long .enough to store status
information and perform a V .operation on
Wait~-Semaphore.

38. Device handler routines must support multiple

. : B et S
TSR SRR SN o« MRS SR

job streams from card readers.

Ry

PR P -

DEFINITION: Support means that the routines

must distinguish among: ’é

--= job control cards; E

=== object -deck; ?

--= data cards; i
f and to delineate jobs and job steps. g
% IMPLICATIONS FOR DESIGN: Each card reader é
; represents an input job stream. %
? 39. A device is-dedicated to a job. ;
F%. DEFINITION: A dedicated device is alldcated to é
?} a job for the job's entire duration; this is é
Eﬁ especially applicable to card readers and %
é;» printers. Allocation is made by the supervisor %
;T during job definition. z
;: IMPLICATIONS FOR DESIGN: f
?'(T§* --= a card reader represents an input job stream; é

W - s 0
b - - o .
En P T, DI . L . L s TR o - T o e s e o s AT s T ST A e

40,

41.

42'

- 245 -

=== a line printer must be allocated to a job
pridr to the job beihng made eligible to run.
The. device handler routifie supports one card
reader per input stream.
DE?lNIT;ON: I/0 that cari be processed sequen-
tially to terminate an I/O stream. A single card
reader then is used to réad in an entire job
stream.

IMPLICATIONS FOR DESIGN: The system can continue

to accept jobs as long as sufficient responses
are allocatable. As soon as we reach the
resource. limit we must stop reading in jobs.
Therefore, the supeévisor process must allo=-
cate resources as jobs are being used in in
order limit the number of jobs at the appropriate
time..
The user must specify a name for his input
stream on JCL.
The device handler routine must support one line
printer per output stream.
DEFINI?ION: The user may specify a certain
output device in his JCL.
IMPLICATIONS FOR DESIGN: The device name for

output must be specified in JCL.
The user must provide his own routines for non-

standard devices.

AR e e
5 S shares S e v A T

. ™ T
B A A N AVPE £ = AR < A YR

ot

PN

FRNT S

wEa e

conaned Lanntbn

At o meTh AR

B ot VN

43.

- 246 <=

DEFINITION: The usér may supply his own routine
to issue His own I/O commands..

IMPLICATIONS FOR DESIGN: The user must indicate

the usé of a non-standard device in his JCL
statements. The device handler proceéss must
supply a routine to handle the. interface for
‘devices wherein the: user wishes to provide his
‘own I70 commands.
A prdcess synchronization mechanism must be
provided to serve as a lock on a database.
DEFINITION: The process synchronization
mechanism is the P-V operations used in conjunc-
tion with semaphore.
~-~ P operation - of value >0 then value = Value=l
if value < 0 then value=value-l
and the process is ineligible
or blocked.
--- V operation - if No processes are ineligible
then value=value+l
if there is a process ineligible
then. value=value+l
and the waiting process is
eligible.
--- Applications - the semaphore when the initial

value=l can serve as a lock by

T S S——
PRVSRSA | S L

DR SO T T
R PR | SR - ot S

JOR S

44.

45.

46'

requiring a P-operation before

accessing and a V=operation
afterwards, can insure integrity
6f a resource.

IMPLICATIONS FOR DESIGN: P-V operations can be:

used tq,grdvide;p:oteétion for -databases.

A process: synchronization mechanism must be

provided for the timing of synchronous processes.

DEFINITION: For processes which require synchro-

nous processing, the P~V operations can be used

to insure that such synchronization takes place.

IMPLICATIONS FOR DESIGN: Since P-V operations

are available only to system process, this
technique may be used to insure that system
processes run in sequential order.

A process synchronization mechanism must be
provided for synchronization between the sender
and receiver in message processing.

DEFINITION: A message facility is available to
all processes for interprocess communication.
The P-V operations can be employed by the
message facility to insure that messages are
synchronized and queued.

IMPLICATIONS FOR DESIGN: The P~V operation can

be used to establish a message queue facility.
A process synchronization mechanism must be

provided to lock a device.

R A P

47.

48.

49.

- 248 =
DE?;yiTIOFé ‘All deviceés are dedidated, one péer
job: 'The P-V opération can be used to. lock each
device.

IMPLICATIONS .FOR DESIGN: The P-V éperation can

‘be used to lock devices.
An interrupt handler routine must be provided
for I/0 interrupts.

DEFINITION: An interrupt is an occurrence that

causes the processor to take some immediate action.

The IBM System/360 has a mechanism for being
interrupted, saving its status, determining what

general class of interrupt has occurred, and

executing an appropriate interrupt handler routine.

\IMPLICATIONS FOR DESIGN: The interrupt handler

détermines the cause of the following faults and
calls the appropriate operating system function.
In this case, it calls the I/0 interrupt handler.
An interrupt handler routine must be provided for
program interrupts.

DEFINITION: Program interrupts consist of inter-
rupts employed within the program structuie to
enable a synchronous processing.

-

IMPLICATIONS FOR DESIGN: This facility is

available only to system processing and must be
provided for that purpose.
An interrupt handler must be provided for

supervisor call interrupts.

L et

X +
il
:5
1,
8.
i
iR

l;w‘m,w A R
<

50.

51.

52.

- 249 -
DEFINITION: Supervisor call interrupts are
required to recognize SVC instructions. This

mechanism is used to activate the éxtended machine

instructions. and to. transfer between levels of

the system.’

IMPLICATIONS FOR DESIGN: The operating .system

must include a supervisor call handler.

An interrupt handler must be provided to deal with
external interrupts.

DE@INITION: External interrupés are generated
outside of the operating system due-to external
conditions; specifically, timer runout trap.

IMPLICATIONS FOR DESIGN: The operating system

may utilize the timer function to provide for a
multi-programming environment.

P-V Operations are available only to system

processes.
DEFINITION: Since the P-V operations in effect
control the synchronization of the operating sys-
tem and lock various resources, they are available
only to .operating system processes for use.

IMPLICATIONS FOR DESIGN: User processes must have

another mechanism available to synchronize their
processing.
A message facility must be provided to all

processes.

g
¢
i

B
¥
i
3
1
3
i
1
2
3
!
1

o,

e ime AT e - w

ok AR VA . oand

T P I SR

IR

Fa il £

Tine

it e At s af o AN L LR

DR S e P e * _ st oot e Toremmv Ao o SR IETERRE T T B e A e

CREE TR R Y

N A PR T e

53,

54.

- 250 -
DE?INiT;ON: The message facility must be avail-
ablée for interprocess communication to all
processes in the system..

IMPLICATIONS FOR DESIGN: User processes must be

identifiable by name. The message facility must

recognize:

~-== a sender;

-=-=- a receiver;

--=- the size of the message; and

--= the text.

The message facility must be able to gqueue up
messages to -a given process, uses memory manage-
ment for message buffers, uses P=V operations to
synchronize message flow.

The process receiving a message must be able to
determine the originator of the message.
DEFINITION: The receiver of a message must be able
to determine from whence it came.

IMPLICATIONS FOR DESIGN: A process may be kept

waiting for a message from another process, as a
means of synchronization.

The receiving process may read the name and text
from the originator.

DEFINITION: In order to respond to a message the
receiver must be able to verify that it is the
correct message from the correct process. In order

to take action on a message the receiver must be

PUPI NN

s s

3
& paen ¥

e

Feva (7 a

55,

56.

57.

- 251 =
able to read the message..

IMPLICATIONS. FOR DESIGN: The receiver imust have

the capability to read the name of the originator
and the text of the message, but this ddes not
imply that the message must, in fact, be read.
Messages are of an arbitrary, but specified length.
DEFINITION: The message facility must allow for

a valuable message size.

IMPLICATIONS FOR DESIGN: The message queue must

be dynamically allogated space since the number
and size of messages is variable. Note that no
limit is specified for the number of messages.
Any number. of messages for a given process may -be
queued while waiting to be read by the process.

DEFINITION: A process can have a varying length

-queue of messages waiting to be read.

IMPLICATIONS FOR DESIGN: Each process has a

variable length message queue which is dynamically
allocated.

All messages, enqueued for a given process to read,
are released when that process terminates.
DEFIN;TION: When a process terminates, all
messages waiting to be read are freed.

IMPLICATIONS FOR DESIGN: This is performed within

the destroy process SVC by freeing memory used to

store the messages.

S s L2
N R T

o > e
ot v At anad . e e AP Bt (U2 et

R b T~ R A

[ORE e

pErr—

PR T O

LI

5 8\0

59.

60.

T " o BBy o ST ity 25, it T FETTRITTTY

- 252 -

‘Messages aré not reéceiptablé for; from receiver to

sender.

DEFINITION: The receiver of a message does not

hHave to acknowledge receipt of any message to- the

sender.

IMPLICATIONS FOR DESIGN: . If the message facility

cannot locate the process for which the message
was intended an error condition is caused.
If no messages are available to a process which

expects’ one, it may go blocked.

“DEFINITION: The message facility can be used for

process synchronization; therefore, a process is
blocked until properly synchronized.

IMPLICATIONS FOR DHESIGN: The user has a mechanism

for the synchronization of various processes.
User programs utilize a job control language
statement to specify resource requirements.
DEFINITION: Job Control Language is the means by
which a user specifies and quantifies his resource
requirements to the operating system. For the
purposes of the sample operating system, the
simplified JCL must specify:

=== memory size required;

--- name of input device type;

--- name of the output device type: and

-=-= ncn-standard device for which the user will

supply his own handler routine.

e e TR

e oA

61.

62.

63.

- 253 =

IMPLICATIONS. FOR DESIGN:

-~~ JCL ¢ard is used to delineate job .boundaries;
--- It must be the first card of the deck so that
resource requirements may be determined.

The operating systém must accept input data from

the user's job stream.
DEFINITION: The user may input data to be read
and used in execution of the object deck.

IMPLICATIONS FOR DESIGN: The supervisor must be

capable of distinguishing among JCL, object deck,
and data cards for any job. P

The supervisor process must load the user-supplied
object deck into the user area of memory.
DEFINITIQN: Once the supervisor has‘allocated the
resources required for the dser's job, the user's
object .deck is read into his partition.

IMPLICATIONS FOR DESIGN: This is a function of

thc supervissr process.

All processes may dynamically create additicnal
processes.

DEFINITION: The user has the SVC instructions
available to him which allows the creation of
additional processes.

IMPLICATIONS FOR DESIGN: The user processes run

in the same partition and state as theée initially
created user procesg. The user may destroy only

user created processes.

64.

65.

66'

- 254 -

Dynamically created processes ruii in the -same
memory area as$ the parent job.

DEFINITION: Dynamically created processes must
shafe the memory partition allocated to the
parent job and have the same protection .attributes

assigned.

IMPLICATION?MFOR.DESIGN: Dynamically created user
processes must be identifiablé and are protected
from other jobs in the same manner as is the
parent job..

User processes cannot dynamically allocate memory.
DEFINITION: This is directly implied by #59.
Since user created processes run in the partition

of the parent job, no more memory is needed.

' However, some people will attempt to get more

memory than they can use.

IMPLICATIONS FOR DESIGN: The user must specify the

memory requirements of the entire job, including
dynamically created processes, once and be satis-
fied with it. Attempting to exceed the user's
memory partition will generate an erfof.

User processes can destroy other user processes
only within the same process group.

DEFINITION: System processes are created for the
use of the operating system and must be maintained.
These processes consist of supervisor process and

device handler process.

\ < T et 2
.,.,,v.)\fu»\ s b e et AT e o B SN

<A

& o R i s S s

"

67.

-68.

69.

- 255 -
IYPLICATIONS FOR DESIGN: System processes must be

identifiable and protected from user destruction.
The user destroys: a. process: by unlinking the PCB,
system processes do not have a specified PCB.
User processes run in the problem state.
DEFINITION: The problem state is one of two
states defined by the IBM System/360.

<

IMPLICATIONS FOR DESIGN: System processes are

protected from user violation and/or destruction

by the two state: machine concept.

The user process must signal~comp}etion (successful

Asr‘unSuccessful) to the operating system.

DEFINITION: A completion signal: i.e., stop

process, is required so that:

--- {raffic controller may schedule a process; and

=== gsupervisor process may reclaim system resources
at the end of a job.

IMPLICATIONS FOR DESIGN:

--= user processes may only stop user processes;

=== a process must be stopped before it is destroyed.

Thé user's job can reference at most: 1 input
device, 1 output device, 1 non-<standard devices.
DEFINITION: The operating system will allow
references to only one sach of the three degrees
types.

IMPLICATIONS FOR DESIGN: 1/0 commands operate as

streams unless otherwise specified by the user in

70.

71.

- 256 =~
the handling of exceptichal -devices.
There. is one supervisor process. per job stream.
DE?;NITIQN; The supervisor process must schedule

all jobs and prepare them for execution by ¢alling

other appropriate modules -of the System. Functions

of the supervisor process include:

«== determines the amount of memory required;

-=~ set storage protection keys;

--= gtarts a process in an interface routine for
each device; .

==~ reads in the user's object deck:;

-=-= user process starts to run; and

--= ypon completion, the supervisor process
destroys all processes created for or by the
user frees memory and devices.

IMPLICATIONS FOR DESIGN: The supervisor process

acts as the interface between the user and the
operating system.

The I/0 interrupt handler routine must provide for
a synchronous scheduling of a process requiring
fast processing.

DEFINITION: The interrupt mechanism transfers
control to the traffic controller causing the
process waiting for the interrupt to start running
immediately. It is, therefore, possible to attain
very fast processing of exceptional interrupts.

IMPLICATIONS FCR DESIGN: Interrupt routine trans-

s b

ot st

PN

retoee b n

3

Bt 2

(SRR N

>
A RL s i

LRSI R A S S

R IR N7 SPPERS

P) k)
el Mt cibes g et &N

- 257 <
fers control directly to the traffic controller in
order to run a new process.
72. System Initializationi THe operating system must

include a non-systeém resident task which loads the

'0/S: into the computer and defines the processing i
environment. :
DQFINITIQN: Initial program load routine runs é
free of most of the rest of the system, and E
serves to initialize supervisor process .and. SVC é
routines, essentially by initializing PCB Zé
entries and free. storage blggks for memory. “é
IMPLICATIONS FOR DESIGN: This systef is used ;é
infrequently and depends heavily upon the final %
implemeqtation“design in order to carry out its %
‘ functions. \é

']

i i B it B g wh b R B e st o i

A
L A VT

et) ol F e e,
T L o P i sreg a2 P w4

- 258 -

APPENDIX H

Final Interdependency Assessmént

Results.

Note 1: (s) Indicates that the requirement indicated
supports the implementation of the require~
ment being assessed.

(c) 1Indicates that the requirement indicated
conflicts with the implementation of the
requirement being assessed.

Note 2: Requirements 1 through 6 were not assessed
for the reasons stated in 4.1.10C. B
3

-~ 259 -

7. ‘The operating system must provide for a multi-

8.

programming environment:.

10(s): Resource ‘allocation is performed. as a job is
read into ‘the system, except £for process
allocation,

13(s): A multi-programming environment must include

job protection mechanism.

14(s): Information tables are the mechanism by which

the operating system monitors and controls the
multi~programming environment.

17(s): The need for pure procedures is driven by a
multi-programming environment.

19(s): The supervisor process creates one process per
job initially to support multi-programming.

21(s): Multi-programming environment requires that
multiple jobs be scheduled.

35(s): Some memory allocation scheme is required to
support a multi-programming environment.

40(s): Device handler routine facilitates the reading
of multiple job streams from differfent sources.

60(s): JCL assists multi-programming by delineating
jobs and specifying resource requirements.

70(s): The supervisor process controls and synchro-
nize all the functions in a multi-programming

environment.

The operating system must run on a machine that has two

- 260 - :
distinct :stated; i.¢é., problem and supervisor. :
12(s)+ User communication with the operating .system 1 g

viaa special call ensures that the usér may be “
restriétedﬁfxoﬁlcgrtéin*pgivilegéd‘instruc— é
tions.. g
16(s): Only .certain special instructions are wuser é
callable. ,g
18(s): Special instructions explicitly executed in E
the supervisor state. '%
49(s): An interrupt handler must be available in é
order to change machine states. ”é
67(s): User processes an restricted to the problem f
state, E
9. All resource requests must pass through the supervisor
précess.
10:(s): All resources, less processor, must be allo-
cated prior to the job being made eligible to é
run.
12:(s): Resource requests..are processed as privileged 5
instructions through the éupervigpr process. é
28:(s): The resources must also be reclaimed by the ;
. supervisor. %
29:(s): Resources are reclaimed when an errdr condition
terminates job processing.
3l:(s): Memory allocation is a resource request.
37:(s): Device management is a resource which must be ’
allocated. é

P T T e ek

10.

11.

60.2(s):

70:(s) =

- 261 -

JCL specifies the: resourcées required of a job
bt

> T L,

to the supervigor process.
H

The supervisor 'process controls all resdurce

allocations.

System resources must be allocated toa job iprior to the

job being .made eligible to run.

1ll(c):

19(s):

31: (s):
37:(8):

60:(s):

70:(s):

User resources; i.e., processes are allocated
at ‘the process level.

The: supervisor process. allocates all resources
to a job. |

Memory is an allocatable resource.

The device handler routine is allocated to a
job at this. time.

JCL enables the user to identify his resource
needs. '

The supervisor process controls all resource

allocations.

A process must be ready to run prior to being allocated

14(s):

25(c):

26 (c) :

:a process.

The status of a process is direétly maintained
and controlled by information tables.

A process shall not be ready if it exceeds the
time gquantum.

A process shall not be ready if it is waiting

to synchronize with another process.

ot

- '\t
Ry

sl

Nt Bereva w7 AdNC e ZCS %

27(c): A process shall not be ready if it specifi-
-cally relinquishes ¢ontrol to the traffic

controller.

B b .
PV R et cr

59(c): A process shall not be ready if it is waiting

to receive a message.

12. User communication with the operating sytem is via

special call.

16(c): Only certain of the special calls are available
to user processes.

27(s): A process may relinquish control to the
.operating system via special call.

46(s): The process synchronization mechanism is imple-
mented using a special call.

49(s):+ The supervisor call interrupt is generated by
special call.

52(c): The message facility is another mechanism
employed for user'communication.

68(s): The user must signal completion using a special

call.

13. The operating system must protect user jobs from. each
other.

14:(s): Information tables contain the information |

required to protect user's jobs.
20(s): The creation of a single process initially,

isolates user jobs from each other.

35(s).: The protection of meémory partitions can be

TN AL T L T

———

o et i o el s e it S e
R P U O ST g L

p o ey T £ T

- 263 -
accomplished. with the same implementation
utilized £ .he requirement.

64(s): As a protection mechanism, dynamically created
processes run: in. the memory area of parent
jobs

66(s): To protect jobs, a process can destroy only
those non-system processes within its. process
group.

67(s): User processes run in the problem state to

prevent access to system level functions.

14. The:opérating system must utilize information tables to

monitor and‘ control processing.

15(s): Dynamic allocétion of system tables is required
in support of wmulti-programming environment.

24(s): Round-robin scheduling is accomplished most
effectively by chaining the tables together.

32(s): Memory allocation is accounted for in 2K
increments.

33(s):+ The operating system may‘dynamically allocate
memory for information tables.

36(s): Collapsing free storage areas requ‘ire‘s' that
the system tablés be updated.

43(s): P-V mechanism is used extensively to restrict
access to system tables for protection.

52(s): The message facility requires use of informa-

tion tables extensively.

T S P O VD Yy G P O R T2 S el

T AS Y R e

15,

16.

17.

- 264 -

Systeém: tables can be dynamically allocated and

released.

33{§)$ Dyhamic mémory allocation facility fully
supports this requiremént.

56(8): The queuing of messages requires a dynamié
memory allocation facility.

66(c): The user is strictly prohibited from dynamic
memory allocation.

Certain system routines are user callable.

18(s): Extended machine instructions are executed
in the supervisor state to provide a system
check to determine if use is authorized.

51(s): P-V operations are specifically restricted
from the user since these are used as system
locks.

52(s): The message facility is made available to all
users for user communication. '

System process routines are re-entrant and shared.

33(s):

37(s):

44 (s):

The operating system maintains pure code by
dynémically allocating memory for work space
for system routines.

The device management process is a system
routine which must be shared among many users.
The process synchronization mechanism is used

as a lock to synchronize usage of certain

routines.

Eereonere st

R TR

PORCSEIRY

HES i mes e

Frar

e v Aot b R ¥

et R AN Tosm s

o W,

4.
cun P e

N
4

1

- 265 =

70(s): The supérvisor process is a system routiné .

which: must be shared among many jobs.

Extended machine instructions are executéd in the

P T Y

supervisor state.

49(8): An interrupt handler must be provided to
recognize and handle extended machine instriuc-
tions. ‘)

67(c) User processes must run in the problem state,
and generate calls to the ‘operating system via

extended machine instructions for resources.

The supervi§or process must -schedule jgbs and prepare

the jobs for execution. '

20(s): The supervisor initially creates one process
péf job.

21(s): The supervisor schedules jobs strictly on a
first-come, first-served basis.

22(s) s The functions of the supervisor, and the inter-
faces must be clearly defined so that improve- . E
ments may be easily accomplished.

28(s): Another function of the éupervisor routine is
to reclaim all system resources.

29(c): The supervisor must reclaim resources when a
process generates a system level error,

62(s): The supervisor must also load the user's deck }

in order to prepare a job for execution.

70(s): One supervisor process exists per job stream.

F

20.

21.

22.

23,

.- 266 =+
‘Initially, one pthegs‘is«éréated‘for‘eachzuserls job.
'63(s): The user proce§s may create additional
processes to form a process group after the

‘user ‘process has been initiated.

Jobs are initiated strictly on a first-come, first-

served basis.

22(s): The FCFS scheduling is simplistic; therefore,
we can improve system performance at some later
time by modularizing thig function,

40(s): The fact that all input devices are dedicated.
card readers, forces the FCFS imprementaﬁiqn.

71(c): 'The provision for a fast I/O processing mech-

anism may preclude a job from being~§cheduled

strictly FCFS.

The supervisor process must be modularized so that

improvements to the system can be easily accomplished.

70(s): Modularization of the supervisor process
requires that its functions and interfaces be
clearly defined so that any change in its

implementation be made explicit.

The process scheduler must time~slice CPU usage among

ready processes to achieve multi-programming.

24(s): All processes are scheduled round-robin, so
that the next sequential ready process is

selected for scheduling.

P

Ly b e e aaeasr

Lot

P

25.

25.

26.

- 267 =
25(s): Thé specific time-slice -quantum equdls S0ms.
'50(s): An external interrupt is génerated when a
timer runout is deleted, and a handler must be

provided.

)

Ready processes are scheduled in simple round-robin

fashion by the process scheduler.

26(c): A process is not scheduled it is is waiting
for synchronization with another process.,

44(s): A process synchronization mechanism must be
provided to ‘enqueue ready processes in a chain.

59(s): A process is not scheduled if it is waiting
for message synchronization with another
process.

63(5)} User processes may create additional processes
which must in turn' be scheduled.

71(c): The gast I/0 processing mechanism allows imme=-
diate scheduling of a process, conflicting

with the round-robin scheduling.

A process must be blocked, when a time quantum of 50ms

is exceeded.
50(s): An external interrupt is generated when the
time quantum is exceeded, and an interrubt

handler must process the interrupt.

A process is blocked, when waiting for synchronization

with another process.

i .

i
N4
H
&
¥
8
3
P
5

27.

28‘

- 268 =

44 (s): A process synchronization mechanism is
provided.

48 (s): A program interrupt mechanism is provided to
enable a process to signal that it is waiting.
for synchronization.

51(s): Process synchronization mechanism: is available
only to system processes.

59(s): The user processes utilize the message facil-
ity to signal other user processes for

-synchronization.

A process is blocked, when it specifically rélinquish

control to the process scheduler.

48(s): A program interrupt facility is required so
that a process can signal the process scheduler.

68(s): The user must signal completion of a process,
and, thereby, relinquish control of the

processor to- the process scheduler.

The supervisor process must reclaim all system resources
from a job when the job has completed.
29(c): The supervisor must also reclaim resources if

a user process generates a system level error.
36(s): Free storage areas must be collapsed and recon-

figured when a job ends.

37(s): The device handler routine for a particular
job must be terminated.

43(s): All system locks must be released when a

A R aEa LN

s e e T e ey
PRIORGETIRRRN: 107 VN

2anad L i

P R N R T

JEN-

raCale

JUPEASIDURI S0 1

P O N

29,

30.

- 25‘9 -
particular job terminatés.
46.(s): All devices which are locked by theé job must

'be released.

48(s): The user must signal the end of his job, and
an interrupt handler must be provided to. deal
with the signal.

68(s): The user is required to signal completion.

70(s): The supervisor process is restarted when the
job ends just long enough to clean up all the

resources..

Supervisor must reclaiin system resources when a user

process generates a system level error.

487(s): Upon generation of a system level error inter-
rupt, a handler must take control and deal
with the interrupt.

68(c): Normally the user must signal completion, but
this requirement dictates ‘that abnormal ending

must be recognized.

Reference to :processes within a process group is by

symbolic name-

53(s): The message sending and receiving recognition
mechanism is strictly accomplished by process
names.

54(s): Same as 53.

63(s): Dynamically created processes within a process

g resd

oot

3l1.

32.

64(s) ¢

66('s).:

at

=270 -

group must Be named as they are initiated.

Processes of the same process group must run

on thé same mémory area as the parent job.

User processes may destroy other user processes

only within the same process. group by symbolic

name.

The operating system must allocate memory for a job,

the size of which is to be supplied by the user.

32(c):
34(s):

36(c):

43(s):

60(s):

65(c):s

Memory allocation is limited to 2K increments.

Memory must be allocated using a best-fit
algorithm.

Memory is collapsed into contiguous blocks
whehever it is freed, which enables reassign-
ment.)

The process synchronization mechanism may be
used to lock a database after allocation.

The user specifies his memory requirements in
JCL.

Once initial memory has been allocated, the

user cannot dynamically allocate memory.

Memory is allocated in 2K blocks.

34(s):

35(s):

The best-fit algorithm is used to limit the
wasted memory space.
Allocation is 2K blocks allows hardware protec-

tion of memory be IBM/360 hardware.

RS Vol Tyl X
SO TE e T e SR

Lt
Sute b L

]

A . .
FEPRC I N APPSR RSY

[P | A

1

33.

34.

- 291 -

36(s): Memory is configured wherever it is freed.

43(s): The process synchtonization mechanism ‘can be
used to lock .a database once memory has. been
allocated.

60(s).: The user must supply his memory requirements
in 2K increments.

65(c): User process cannot dynamically allocate memory

whereas system process can.

Operating 'system can dynamically allocate memory to

itself for temporary workspace or buffer areas for sys-

tem processes.

35(s): Once allocated, memory areas must be protected
to jprevent simultaneous access.

36(s): Memory must be reconfigured by the operating
system whenever a block is freed.

37(s): The device management system requires memory
for temporary workspaces.

43(s): The process synchronization mechanism can be
used to lock databases.

56(s): The message facility requires dynamic memory
allocation to enqueue messages.

65(c): User processes are strictly prohibited from

dynamically allocating memory.

Memory is allocated using a best-fit algorithm.
36(s): Memory is configured when de-allocated to

ensure that the largest contiguous blécks are

T

X!

N
#hsrBens Lo Eadaseen Namk

Bt ntaran

]

§

)

«5.’4
|

S
A

e

- 272 -

available to the system.

60(s): The user must. specify his memoiy requirements

in a JCL statement. o

35.. Memory must be protectéd to prévent the simultaneous ‘é
allocation of a partition to multiple jobs. é
43(s): The process synchronization mechanism is a%éil-‘ ;

able to lock a database.

64(s): Dynamically created process must run in the
same memory partition as the parent jobf which
further protects memory.

65(s): The user is strictly prohibited from dynami-
cally allocating memory which reduces the R

protection requirements.

36. Free storage areas are collapsed into contiguous blocks it
of memory whenever a job pavtition is freed. / @
-68(s): The user must signal completion of his job, to

the operating system so that memory may be

P TR R

reclaimed.

37.. The operating system must supply a device management
system, which runs as a separate process, one per davice. VE
38(s): A device handler routine must be included in ;

the device management system.
39(s): Since devices are dedicated, only one person ;
per device is required.

40(s): The device handier routine is specifically

| -
W .
P e A VP

s e PR b B R SO [P e o - .-

38.

41(s):

42(s):

46(s):

47(s):

69(s):

t- 273 -

required ‘to support only one card reader per
input stream.

The device handler routine is specifically

required to support only one printer per output

stream.

The dévice management system must enable the
user to supply his own routine for non-standard
devices.

The process synchronization mechanism is avail-~
able to lock a dedicated device.

An interrupt handler routine is provided to
process I/0 interrupts.

The user must declare his devices,’and is
limited to a card reader, a printer, and a non-

standard device.

Device handler routines must support multiple job

streams from card readers.

39(s):

40(s):

61(s):

69(s):

Dedicated devices enable sequential proées;ing
and simplify the designation of job stream.

A card reader represents an input stream;
hence, multiple cari readers represent multiple
job streams.

One aspect of the device handler routine is to
distinguish among JCL, object deck, and user's
data.

The user must specify which card reader consti-

N

39

40.

e

A device

40(s):

*41?(3,) $

42(s) s

46(s):

60(s):

69 (s) :

R R R

- 274 =

tutes His input job stream.

is dédicated to a job.
Since devices are dedicated, a card reader
represents an input job stream.

Since devices are dedicated, a printer repre-

sents an output job stream.

Non-standard devices employed by the user must

be -dedicated to his job.

The process synchronization mechanism is
available to lock a device.

The user must identify the devices used by a
JCL statement.

The user must explicitly identify which devices

he is using.

The device handler routine supports one card reader per

input stream. ;

42(c):

S5(s):

60(s)-:

61(s):

69(s):

The user must specify his own handler routine
for any non-standard devices used.

The process‘synchronization mechanism can be
used to lock a device to an input stream.

The user must identify the devices used by a
JCL statement. |

The device handler must enable the operating
system to discern between JCL, object deck,
and user's data,

The user is limited to one card reader or non-

-

41,

42 .

43'

- 275 =
standard device for input.

‘The device handler routine must support one line printer

pér cutput stream. \

42(c): .A user must supply his own handler routine for
any non-standard devices.

46(s): The process synchronization mechanism can be
used to lock a device for an output. stream.

60(s) The user must specify a printer for use in the
JCL, statement.

69(8): The user is limited to one' line printer or non-

standard device.

The user must provide his own routines for non-standard

devices.

'47(5): An interrupt handler for I/0 interrupts mﬁst
recognize that a user is providing his own
device handler routine.

60(s): The user must specify the use¢ of a non-stand-
ard device in a JCL statement.

61(s): Any non-standard device handler routine must
recognize JCL, object deck, and user's data.

69(s): The user is limited to a single non-standard

device.

A process synchronization mechanism must be provided

to serve as a lock on a database.

44(s): The mechanism also may be used for the timing

st dE O

o
FORNIN P

FEW

DD S Ao

L,

e e T — e

IR AN R

RN 1 SO

44.

45.

46.

45(s):

46 (8) :

51(s):

- 276 =
of synchronous processes.
The mechanisim may also bé used f>r $ynchroni=
zation of the message facility.
The '‘mechanism may also be used to lock a
device.
The mechanism is restricted to use by system.

processes only.

A process synchronization mechanism must be provided

for the timing of synchronous processes.

45(s):

46 (s):
51(s):

The mechanism is also used for :synchronization
of the message facility.

The mechanism is also used to lock a device.
The mechanism is restricted to use by system

processes only.

A process synchronization mechanism must be provided for

synchronization between the sender and receiver in

message processing. -

46 (s) :
51(s):

56(s):

The mechanism is also used to lock a device.

The mechanism is restricted to use by system

processes only.

The mechanism is used to establish an ordered

queue for the message facility.

A process synchronization mechanism must be provided to

lock a device.

51(s):

The mechanism is restricted to use by system

processes only.

gy

TSRV N

~

LN e
[ETINV, JU 75

[N

e Ty

P

e 2

PN Y

o

48.

49.

- 277 =

47. An interrupt handler routire must be prévided for I/0:

interrupts..

48(s)

49 (8).3

50(s):

6% (s)+

7%(s):

An interrupt handler routine must also be pro-
vided £or program intérrupts.

An interrupt handler routine must also be pro-
vided for supervisor call interrupts.

An interrupt handler routine must also be pro-

vided for external interrupts:

‘The interrupt handler may be utilized to recog-

nize input data from the user's job stream.

The interrupt handler must provide a special
facility to enable: fast processing of I/0
requests for non-standard devices requiring

frequent updates.

An<interrupt'handler routine must be provided for

program interrupts.

49 (s):
50(s):

68 (s):

An interrupt handler routine must also be
provided for supervisor call interrupts.

An interrupt handler routine must .also be
provided for external interrupts.

The user must signal process completion via a

program interrupt.

An interrupt handler routine must be provided for super=-

visor call interrupt.

50(s):

An interrupt handler routine must also be

provided for external interrupts.
Py

O =

53.

- 278 =~

A message facility must be provided to all processes.

53(s):

54(s):

'55(s) s

56 (s):

57(s):

58(s):

59(s):

The message facility must enable the process
receiving :a message to determine the origina-
tor of the message.

The message facility must enable the process
to read the name and text from the originator.
The facility must be able to handle messages
of an arbitrary, yet specified length.

The faculty must use some sort of chaining to
queue waiting messages.

The facility must ‘be able to release messages
for a process which terminates.

There is no need for a receiver of a message

_to acknowledge to the originator.

The message facility can be used for process
synchronization by blocking processes, expect-

ing messages.

The process receiving a message must be able to deter-

mine the originator of the message.

54(s):

58(s):

59(s):

The message determines the originator by
reading the name of the originating process,
separate from the text.

As long as the receiver knows from whence the
message came, there is no need for receipt.

A process may be blocked until it receives the

message it anticipates from a specific process.

54.

55.

56.

57.

- 279 -

‘Thé receiving process may reéad thé name and text from

the originator.

56(s): In a queue of multiple messages, a progess.
must be able to determine the hame and text
of the .originator:

58(s): As long as a process can read the name of the
originator, there is no need to receipt a
message.

59 (s): A process may be synchronized by blocking it
until it receives the proper text from a given

process.

Messages are of an arbitrary yet specified length.
56 (s): Messages may be of a variable length and
number; therefore, a queuing process is

required to store all messages dynamically.

Any number of messages to a process may be queuved while

waiting to be used.

57(s): The queued messages may not necessarily be
read by a process; therefore, they must be

released when that procéss ﬁerminates;

All messages, enqueued for a given process to read, are

released when that process terminates.

58 (s): A process may never read the messages addressed
to it; therefore, there is no facility required

for receipting.

reu

FHPAI

T
o

o -

>

esStinen b ATE

avr R e T

>

L LR

I T O FO N

7 it e

s
&
H

4
i

61'.

62.

63.

68(s)

- 280" =

A user process must. signal completion to the

operating system .so that the enqueued messages

for that process may be released.

User programs utilize a job control language statement

to 'specify resource requirements.

61(s):

69(s):

The. operating system must be capable of
discerning among JCL, user's object deck, and

user's data.

The user must specify I/0 devices in the JCL

statement.

The operating system must accept input data from the

user's job stream.

70(s) :

The supervisor. process controls the input of
the user's job stream and must, therefore,

separate all the JCL, user's object deck, and

data.

The supervisor process must load the user supplied

object deck into the user's area of memory.

70(s):

All processes may dynamically create additional process.

64(s):

66(s):

The supervisor process explicitly performs this

function as it exists, one per job stream.

Such processes are limited to the initial user

memory area.

The user processes can also destroy processes

but these are limited to user processes only.

K2t WY ﬁw:’

52

P N L -

(IS

LIS

T Y S S X 1eTe TR gee A,

66.

= 281 =

Dyfamically creatéd processes run in the same:memory

area as the parent job.

65($): The user cannot dynamically allocaté memory;
therefore, all user processes mist run in ‘the
area of the parent..

66(s): User processes of different jobs are made
invisible t6 each other and, therefore, can
only ‘destroy processes within the same process
group.

67(s): The user processes run. in the problem .state.
and; therefore, are not capable of allocating

additionai‘memory.

User processes can destroy other user processes only

within the same process group.

67(s): User processes run in the problem state and in

the same memory area as the parent job; there~
fore, user processes of different process

groups are invisible to each other.

T Y R T et S AN Rana TR A M, T M S e RS,

AR Sl s

T S T AR T TR RN 2 P I MO e T T A N ML TN ST T e, T PR eI G T S e e

DAY R

282 =~

Package for the Second Iteration

APPENDIX I
Results of the Interactive Decomposition

I
.
. : - 283 - |
A N) S ’
O rea
| SAVE ;
_ ENTER FILE NAMEZ? 1
508AS I
%
STATUS SAVELD- IN FILE SOSAS. Y
REQS 3
NOLK iR
i
RECORDED LINKS, i
FROM NOLE TO NODE(S) 3. I
7 ¢ 10) 10y 13y 14y 17y 19y 21y 35y 40y 607 70y gé
’ 8 (¢ T2 12y 16y 18y 49y &7 ;
> ? ¢ 8) 10y 12y 28y 29y 31y 37¢ 60y 70y
L 10 (8) 7+ 99 1Ly 19 31y 37s 80y 700
‘ 11 ¢ &) 10y 14y 2Ty 265 27y 599
12 (8) By 9 14y 27» 4by 49+ T2y &8
2 13 ¢ 7) 7y 149 20v 3Ty b4y b4 &7
14 ¢ 10) 7» 11y 13y 13» 24, 32y 33y 34y 43y 52y
4 15 (4) 14y 33y T4y 66y
' 16 (S)- 8y 12y 18y 31y 32y : K
- 17 S) 7y 33y 37+ 44y 70, %
18 (4) 8y 1b&v 49y 67y i
“) 19 ¢ 9 7y 10y 20y 21y 22y 28y 295 62y 70y j
(“, 20 ¢ 3) 13y 19y &3» y
21 B) 73 19y 22y 40y 71y]
22 (3) 19y 21y 70 K
23 (3> 24y 23, 504 1
; 24 ¢ 7) 14y 23y 269 44y TPy 83y 71y g
. 25 (3) 1Ly 23y S0y o
- 26 (&) 11y 24y 44y 48, S1y 59 ,;
: 27 ¢ 4) 11y 12y 48y 48y o
o 28 ¢ 10) Py 19y 29y 386y 37y 43y 46y 485 68y 70y Iy
- 2 (5) 9y 19> 28y 48y 48y .
30 ¢ 5) 53y 54» 43y 64y b4y v
31 (8) 9y 10y 32y 34y 36y 43y S0y 45y . i
2 ¢ 8) 14y 31y 34y 33y 36y 43y &0y &Gy .
/ 33 ¢ %) 14y 18y 17y 35y 36y 37y 43y Sby 45y ;
34 (4) 31y 32y 36y 60 3
35 ¢ 7)Y 7y 13y 32y 33y 43y &4y 63y ;
36 ¢ 7) 14y 28y 31y 325 33y 34y 48y i
°, 37 ¢ 13) 9» 10y 17y 28y 33» 38y 39y 40y 41y 42y |
46y 471 499 @
: 38 ¢ 3) 37y 3% 40y &Ly 69y i
39 (8) 37y 38s 40y 41» 42y 485y &0y 6Py 5
40 ¢ 10) 7y 2Ly 37% 387 39y 42y 46y 60y ble 6%y &
41 (&) 37y 39y 425 446y 60y 6y 1
42 ¢ 8) 37y 39y 40y 41y 47y 601 61y &9y ﬁ
N . 43 (10) 14, 28y 31y 33, 33y 35» A4y 455 46y Slv o
(1 44 (7) 17y 24y 26y 43y 48y 46y Gly H
. 45 (3) 43y 44y 44y S1ly 549 :
- S PO -~ ey %1

77 78 79 80

- 284 -
44 ¢ 109 iﬁ! 28y 37y 3%+ 40y 415 43y 44,
47 ¢ 7Y 37+ 42+ 48s 49 S0y by 7is
48 (8) 26» 27y 28y 29y 47y 49y S0y 48y
49 (&)Y 8y 122 182, 47y 48y S0,
50 ¢ 5) 23y 2Ty 47y 48y 49y
g1 (62 1éy 287 437 44y 4Ty 44y .
92 ¢ 10) 12y 14y 14y 33» T4y 55y 54y G7v
93 (¢ G) 30y 52y T4y S8y S9»
94 ¢ &) 30y 32y 33y T4y 58y T9»
95 ¢ 2) G2y Géy , .
1) ¢ 7) 15y 33y 45, 52y 54, 55y 57»
57 ¢ 4) 52y 5S4y 587 68y
98 (4) 52y 33y G4y 57y
39 ¢ &) 11y 24y 246y G2y G3y T4y
60 ¢ 12) 7+ 9» 10y 31y 32y 34y 39y 40y
bl &9
41 (&) 38y 40y 42y 47y 60y 70
42 ¢ 2) 19y 70y
43 ¢ 3) 20y 24y 30y A4y G4
44 (7) 13s 30s 35y 63y &5y by 47
83 (9 31y 32y 33y 35y 645
-Y-) (&) 13y 15y 30y 63y 649 &7y
&7 (3) 8y 13y 18y 64y &4
468 (7) 12y 27y 28y 29y 346y 48y 972
49 (7) 37y 38y 3%y 40y 41» 42y 60y
70 ¢ 9) 7» 9» 10y 17y 19y 22y 28y &1y
71 ¢ 3) 21y 24y 47y
(AVERAGE NO. OF LINKS FER NOLE? 5.228) .,
REGS
LENQ
/192939495181 73974975976977978279980/
THE FOLLOWING NODES HAVE BEEN REMOVEIN
1 2 3 4 3 6 73 74 79

45y

41y 42y

76

e et s

o, e
CAANGs? D il v

~ s

3t 20t S o qvn? :}a‘e}.‘-{ K

et B o

{:} NODES HAVE BEEN RENAMED AS FOLLOWS?
oL NO, NEW NOs
TETTTTT s s 51 a8
8 2 30 24 g2 46
9 3 31 25 53 47
10 4 32 24 54 48
11 &, 3% 27 55, 49
12 o 34 28 g6 50-
13 7 35 29 57 St
14 8 36 30 98- 92
15 ‘9 37 31 59 . 53
16 10 39 32 gg ég
17 11 39 33 e 5s
18 12 40 34 Pt =5 K
19 13 41 35 e u o
20 14 42 34 i §9 z
21 15 43 37 P 20
22 16 44 38 a5 a1 y:
23 17 45 39 o s 1
24 g as P 69 43 oif
25 19 47 41 54 42 1
24 20 48 42 o1 o i
27 21 49 43 5a 6; i
28 2 50 44 2 : ,
() © Reas
- DIMN o
(FRECLUSTERING COMFLETE) j
NO PRECLUSTERING FERFCRMEDs DISTANCE MATRIX COMPUTER WITH: B = 1, 4
REQ? g
180L :
ISOLATED .NODES: :
&8
REQ? i
DENOD .
/667 ;
THE FOLLOWING NODES HAVE BEEN REMOVED: 3
4é |
be
(" :

7 “3_:,/ et o R . B I G e it mwpe e e e e - J—

- 286 -

REQ?,
DIMN

(FRECLUSTERING COMFLETE?

NO FRECLUSTERING FERFORMELF DISTANCE MATRIX COMPUTED WITH F = 1,

REQS
‘sIMA

SIMILARITY MATRIX COMPUTEL.

REQ?
INFA
ENTER FERCENTABE FARAMETER:

INITIAL FARTITION COMPUTED WITH F = 80.00 %, SRS
REQ? : i
HGM1. kS
BEST FARTITION MEASURES 1,263 |
DG YOU WANT TO FRINT THE TREE? E
ND* i

A
REG * -}3
FRCL i
CLUSTER (NO) OBJECTS kt
& 1 3 4 13 15 16 S6 64
5) 6 10 12 43

1
2 ﬂ
4y 5 17 19 44
| 7 14 24 §7 58 40 61

O D G =
P Y S e R o
~J
r

4

I

(9 8 9 25 26 27 28 29 30 TP &

12 11 31 32 33 34 35 34 41 94 55 1,

&3 45 é

7 (7)Y 18 20 37 38 39 40 45 3

8 (5 =21 22 23 a2 62 |
2 (8) 46 47 48 49 SO H1 82 83

PR e
T

it e e ey ey

I3

TR

- 287 =

REQ:"
WMz 5
BEST PARTITION MEASUREY 1.278
ﬁ0=YQU MANT TO -FRINT THE TREET
NQ:

REQ?
FRCL.

CLUSTER (NO) ORJECTS

. 10 o
B ke e EE T R S ey
s N

1 (11 1 3 4
&A

13

~
~

(13 2 &

(9)
¢ 72n

44

k=

7

62
i8
14

10
-35]
20
24

17

38
58

25
33
48

26 27
33

30

(B ¥
¢ 9y D

)
{ 7) &6 47

.

N U D ol

OOV ORARTIYINON MENSURE S Le1l
P VOET WSMT TR RREINT CTHIE TREE®

"y
fle™ e

Lol 2

Ay

o \i

o s e g
VELETE
) £y e X 4 11 13
e 3 " o
2 { a4l 2 4
-

LA b D I R B 4]

(M1

fri wgvTR
- - -‘v L) "

.

QR) LR

& £ F 7t fgommown
i DL 8 A A P S R
4 &Y 2T 24 2R 29 X0
7 A S T - I v £ N
@ S T ScH £ S £ V) S L
M -
.",fyl

Py
4]

19

39
460
28
36

51

14

)

Ha v

&1

A

5
L
fa

23
)

oy
fo
ol Nay

O
o

g el L g - P 9 R %]
PEPRAR" Ry Sl RIS TRES T om T T e AR T R aE e T s D B TN
: - P " ~ e b v = (RO e S
e
- .“‘ z
) §

.
s

N

s ¢ ”
P NP B AT e e S

TR

- 288 -

HCN -
REST PARTITION MEASURE:

[0 YOU WANT TO FRINT THE TREE?

YES
SET FPAFER AND PRESS RETURNS

34 ==X

3l cmetmmme | m———

54 wmmmm————
55w e

T S T
64 —==x fes

1 mimimidm e e
15 =mmmmem | mmomm e

R
GG mmmmmmmm e

R e e

4 =k

* —— s e s

A S 5008 Goug 0P 400 004 Susd G008 oy doad G408 Siot

* - - wes =

i
i
i

11{1 el e 0000 St P e S Y G ST $O06 UG D Sk TP P S Semd Sub4 Stk S
2 &J—umunnnﬂ—a—-—émm-——

a =%

c§ e mamemer | - e
O T T ——

s3SI R R T — e s e
i J—

21 oy v o ooy | o e ot

t
i
i
H
i

i
i
i
H

3 e o mm e om - e = e e

|
62 smmmmemX o X

42 —mmmmmeee —
20 mmmmmmmme ||
53 mmmmme—ee f
18 mmmmmmmmee—e——e]
§ mmmmmmmm e e
L o e e

i
az
3¢

4] memmmmmmeek
65 mmmmmme e -
§8 - immmmmmmmmee]

57 meme——

man seen e meee Aeee M peem Mmm mmes mes Wer dmas S deee e dman e e wrm mer e e e e e e

18 o= 420 1o 8 2208 G4 1098 0 e i S 08 B e skt Seme e *

P
AN AT

R L . - - o P

o—
e s
g ¢

- 289 -
{;} 47 o EEm——— : by
o 48 -% e ! b
46 mmmmmfmm——— ! ! ! Pk
52 mme——— X | e e X |——— ! !
F1 emmmme———— X ! ! !
49 eS| e e ! : ' !
50 mmmm———f e X ! v
9 - - § = : ! ' !
27 ~meemm—— X { o v e e ¥ o *
8 m—-- X i
38 =i~ '
45 ~K |mmmmmesemaeae— d '
39 ~=-X § e o e b
J7 e § bt
40 =memme—— X V%
29 s e e ! :
59 == ' 1
25 =fm——i fm———
R X | mmmmm—m—— ! '
o | e 3
30 mmme————————— ¥
R - e e
) MEASURES !
A ~201.,500 <=196,000 =~191.500 =185.847 =~179.147 ~172.467
(~164,667 =161.667 =1595.750 =150,917 =~146.147 =140,542
N ~133,042 =124.792 =120,375 ~1146.875 =110,792 =104,792
-99.792 -95,292 -92.292 -88.042 -83.458 -86,042
~74,458 -69,458 -45.792 ~40.875 ~57.958 -53,292
=49,570 -46.617 -43.117 =39,700 -35.422 -30.728
-25,311 -22,978 -20.094 -19.547 =16.,408 -14.,619
-12,669 -10,072 ~7+544 ~4,707 ~54655 ~4,014
-3.307 -2,404 ~1.605 ~04371 0,182 0.934
1,183 1,359 1.411 1,387 1,053 0.971
0,893 0.618 0,555 0,070

%
3

\
—

.

REQ?

FRCL

CLUSTER

MO R> N}Jo-n

REQ:
DENO

/&’6’10’1&'5?17’18’19'20’21'ﬁ&’23’41’4&’43’44'd3’6 r&3r 714224957
58960r6iv8v9v 27946147148949150:51+52,25926128929130,5931+ 32,33y

(NO) OBJECTS

10
18
53
24
27

33

39

- 290 =

11
12

19

62

57
46
29

34
A0

13

20

-+

58

47
30
35
4%

L]
34135:36+54955563137238939140945/

15

40

48

k=34

36

S
ra

>0
G =

THE FOLLOWING NODES HAVE BEEN REMOVED}

2

18
28
38
3
59

]

19

29
39
49
60

K-
20
30
40
\-‘ o
&%

7
21
31

‘a1

91
42

g
22
32
42
52
63

?

23

33
43
o3
65

10

24

34

NQODES ‘HAVE EEEN RENAMED 4S FOLLOWS
OLD NO. NEN Wﬂ.

N AN EORT A S A R &

+
b-R%

12
25
35

A5

5%

36

50
5%

26
36
46
97

44

41

31
63

17
27
37
47

XoH
N

w2t

Caneo s

. B

A LR LT AR L

oy

SR 82y AE Tl w20 ET

*
S

o = = fony 4w e .
HOEL B 200250 33923028

TUREOFGLL WA MOIES o

¥ 4 N 7 S
in 1w 20 21 2
3] peIM 3 0 3, 2
19 39 40 43 42
A AR Yy) Lt
a5y &0 Al &l &7

FOEY HAUE W

R NEN

b T4

=

MY
Vil

MO,
1o € R o e B 0 e 2 i o i

L "

A\t e

2 o]
L]

L 4

™ e

A ot
E

Ay é

yp

L& s

5.-.:‘..} ::'

J ")

. w § f“.‘
[S L4
DEXES:

"'M;\I

(PRECLUSTERING DOMELETE)
» el e . e A Kae S

,!‘:} 5\.2‘. ',.‘\. H"""E""'

PR w4 mae

AT LTI ON
i

1! :‘5: f -5 B

M
™ RN

VEGTER SMpL i e

£ TS M et h e n S0 bare Kae b e Bbes peer bee aea Sied Fas

t] . -y -

o

"y e
LA
< " c\,\ N\ A
RPN
LY Bl et
SRR

P20 24y

FENAMEDT &

TN R g

v e

- 291 -

29

LA R AT S B

QG0 Sl Be P 7 aGed T s AR 0 a8y

'afw.- ¥ ..1\.)" :..4" '.

RN
2 16

2 A

oy

. 34
47 44

ey

a3 G4
A5

R MOV T

J. -
28
\:) :’
A w

e

sl

5 oFOLLOuE

" .
DAFRASTY

TR
200

.
X e
b "

DF CISTANGE

£
A

|n \(“\u dﬂ; i

\.., 4

Ta L7
25 27
3 37
4 A7
vt

Lot
S WY

w/

TN OOMELTED

AN 9

Fr3R AP 4DV YES

@i

.y

[N

ft]
=

iy

k!

- &

B

[o——

T

e

015t

T LT P T ST T
o =
- 292 = g
LR
.
g9 3
- $Y.. 3
k:

br Lol 3 ril o, 88062, 0v 17187192020 922,2324L 042043y 44y -

TeFrl A 24 G750 80000 B9 27 048047 0 48 4Py 30 5Ly G2 ,

2028 3P0 S e 3L 35033 340350380 5Q, 5Hr 6T 37 3823V 40,45/ 2,

FOLLONTME NDUES HaVE BEIN REMOVELD p
= 4 5 7 3 g) 13 14 4?

- . ot

14 1Y 18 19 200 21 22 23 24 o

24 DS @@ 29 %) XL 3233 34 :
FL o3P OF 3P 40 4L A2 43 A4 i
A a7 48 T T S H) 52 53 54 “d
24 ®TO5p 5 A0 AL 4D 8% 44 b
A
MOMES HAVE BEENM RENAMET A8 FOLLOWS: .
CLO M, NEW ND, i
-y
e et oot e o ;
1 ;
A Y :
10 3 i
10 & :
(! RED ;
- 0 MM ;
SRR USTERING DOMPLETE) ;
“
COERLUSTERING FORFORMED AND DISTANDE MATRIX COMPUTED WIH F = 1 :
o IHEn L xy

CLUE FCERS NOT TARKEM 8 SINGLID MOLHES, \

P L
BFQ: '
i :
YEST FARTTTION MEARURE!

1 H 13
D YING WA TH ERCNT YME TREEP

.
"l ¥ (3

N [
PRNHRIPISE 5% PR

- .

ey H

:

¥

YRS T T s -y 4 T @ 3

TOURTER (MO 0N ECTS :

MM AR %N AN a8 Vm AMS Was W et BA% JEE My M8C Siad IMS Shas (906 Neem 1A X ~ <

’l R B - ¢ -

» (A !.) ..-’. A :

e b

“ b o

4

s .

wthad, ¥

4

AV THY 8 17U

- @ A - * “ . 4 e - W1

H

Ptnag plagne A TALI To "
- FILEURE e

LY Y T (Y T N RN

[l
I

o g et

L

Yior's

«

AN
o oY Y
1 33

o
a9 &0
-y “’ ’\‘l\
W s
e
B s

NOTES HAYE REEN
GULI T RN

KON Sma SR RO £ € Brad 0L e e

% +
o L3
) 8]
e
w =y
e "
40 &
PPEN
[Ty [
26
e &y
e i
o o

2 3
) : Q
3)

nx]

I Lok
R 172

[Seiare H
s B
4
wd i
.

L=
w

W

o

SNEN
LT LR T

HETCLUSTER T H7

H

oA gk

.,« “ 4153 e 1!) » 105:"'»

RENAMET 88 FOLLOWS S

G E

LGRS NOT TAREM

kT

yl\n ﬁi’lw)'I! };

1=y

3R Al e A

AL HE
‘--!‘..l‘,l_ \!
£ ™

L4 e
FE x4

A7 A

59 59

!

LY

oy
wYE

=y
-y

o \--'A— ?

f\u' '.-‘m 7 o

Yo

REMOVEDS

8

s
e o

'Xiz:'ll,
AQ
A0

LR AT

e
<&

SR8 2829

R R RATE

wa aa
RS

LA, 24057

)
@
37
51

e

&3

"
k1 "X

¥ .

EG
30
ote)

s—‘ £

&4

o

W

By&lon

Lo32:33:34,

JTER WITH B om

s
=

- e

e

PN §

-
*Aeurre,

PR FPIPE

(SN N

et e

bssenn

b 2w

LI %

P N

ot

e

U

kg ¥ wirn

Lo v
' 4

s 20 ARG LN 3 B L e
S S ol e TR, RS TP S Pool N 4D KA = #
r; % T - - - TreS——" - Snt=ae P " =

Bi ? . R N

PARES N -
5.
ek - PA ‘

4 F -

- N
¥
i~
i
L2 .

5

E = 294 -

I

¢4)

g

S . .

A g . . ;

. g o O

= Iy ™ s

o s g

i Y K EOE DTT Ol M AT e e .8

T w e ! O P " PR R RSBl

3 o oM

N . N BT T e .

i SR LU A R RN .

M -,
£ et :

s [H 3

i8 . N
1 . c
i
S N «
Y(‘ . ~
s -

i o
N - N
L K R

AN 4

3 !

A R

.. IR PRC ZNTEY U BT k-
s wt [P . h A e e % %S
I w eet e i e e v o ot 1 i
5 i

’ H
" . o o S -4 1. [. i
;
i S 1 3 13 L ;
9 P ~ G 112 3
Y ¢ 3 2 A @1 12 :
ow - -ay b of i .
W { Y 4 7] i) 1.
R ’ e w - Ll o ad aba Ty
3
"y N
|: v !_ g

SN L EANN . .

. "
. LA VIR

T Y A

WERASURE®

" I\ ¥
Nt VY a

Aot

.'?:‘}8':'\ * >

14
>
.
(|
L}
4
2
3
b
. 3
. 3
|) o
¥
!
{
:
!
N
; 3
i
~ we s T

- T .

VA A i sl Lo S

D N g s
= S

(=} |‘: {'\ L]

nE
STr A LBl

?

AN L0 EF AT AT B P
x

PR IR F TN T RIS

i\l el y‘- ey

.-.---

l.‘.

@3 Ht aé 27
e J3 S 37
44 A% dé 47
g R T 9

HISES ARSRN
L1 ah

NEW

P LY LR P R P R Sy

o ..'.
1 "
T .
A X
o
AU S .q'
l»\‘ 1:! :5

'y
h-Lh &
AN 7

|n';'
*\= ||

“;" »

1y

- 295 =

* ud

Bhy A7 e ARy AP 5

0

il

.’ s)\g \.)‘n B \..v;)j_”:') » ‘“qd y ‘_.

SIS N

axa! fona meew »

&

13
29

e

3P

REMO

g

DR

L}4)
¢

2 AP 2022

g e vmmn e
SRERAE RIS S

10

-

1 20 21 232
30 31 3 33
40 41 43 43

38
Q [
AR

A9
A3

a0 91 532 93

&4 &G

HAVE BEEN RENAMEN

Ah

FOLLOYWS

DT LAY s A0

- Wp b e ed

1
AG S

s

Lo Mo Mo

~

WElorha, it e AL

&

07 el R
SURECLUSTERING COMPLETE) §
i

14

SO URTERIMG RERFDOSMEL AMIN DTETANGE MATRILY COMRBUTED WITH P o= 1 b
ClaTiRe NP TAREM 48 SINGLE MODES, :
i

§

REG? i
axloaty® 3 5
MM 3
RAET PanyITION Mragupgd 2,333 }
a0 o JﬁﬁT FOREINT CUE THREEY i
5

iy §
H

VEiS ;
R]
) i
(MY DOERTEe :

avaet KX X oA ea son s pems o S et % 4 o 2 b e §

: S - S S T - T :

;

Lera 4 f
PEETY :
AT Ry T 2 0 YA %
fuctall L1 Bl Fie B} A (\.!5.:“-\‘ « ;
R - :

i

i

H

. L i

REQS
DEND
/lrBrdrlls13515916958v645296510912559 17,185 LF920,21522+23741542y
43}44753!62%65y7!f4724757r5é?50761w25936r38y39930wﬁ9931v32733734!

*

35+36154r55763+37738,3%,40545/

THE FOLLOWING NODES HAVE BEEN REMOVED:
1 2 3 4 5 & 7 10 i1 12
13 14 15 46 17 48 19 200 21 22
23 ‘24 25 26 28 29 30 31 32 33
34 35 36 37 I 39 40 41 42 43
44 45 53 54 55 54 57 58 59 40
61 42 43 b4 65

NODES HAVE REEN RENAMED AS FOLLOWS:
OLIY NOV NEW NO.

8.
?
27

P -9
Q
O CWMNOUIDGIR

4]
3
[ore

-
.« 3
¥ Ton w

N LG TR S MERE KREN ANT DISTAMCE MATRIX COMPFLTEN WITH F o= '

a
PR AT TSREN A% STMELE MODES.

PR (R ey

LTI I
«

.
AR SR
FIA

SEET RATTTYION MEAEURED 9,52

o S e g
Wed™ T) 2RINT THE TRERT

LS & T]
~ oA ot Su ~Aaw

L
S Ll

Ay s MR Xy Y [y T
SEBERTR R MDY RO
et ek e men E e mae s e nme
- Y ' IS ::
. oy ” [a 2 3 2 s
- - » - P - -
E -:“ v
L

e m vmgm .
- . " . by
AeAl aex Wt g A g e
* oA aaeow o

FE RPN . v ames
PR N

L8,

PIEPAN Y

PP . W EOpIUNNL VI

Y.

£ T NGNS,)

©

[

';‘\

s i L I S e - e A e
N
- 297 -
« :'t-::'|)~“ .
e, N AT
. 3
RO PO A RO Ik pEa L7 1B LR 20020 222020 Ak 0 a2y
¢
T SRR e AR e &Gy T ol 4 24 e P37 Yo A7 v 4B AT EQr EL 0 G2y
‘.’
B FER XA T T A A5/
T R OITMOG MqONEY HAVE .
L Q? N4 4 o Q@ 10
3 ik 1z 34 1% e 22
ad »32 23 24 27 o K$5)
) 37 ogs: X9 40 Ad 45
44 A7 AR 49 A ; S il
Ga b w3 Ha &1 é2 B3) &5
.
MO MU RSN IR AR FOLLOWS Y
LA A 11 PR CER 2 I
ot et v e et e
E 1
- - .
Vo e
& £ X
7 b X
1 an o+
i I 5
- l‘":f'\ (j:‘
(
' A
D7 +4p
TREEDLUSTERING OOMRLETE)
SN - ke Yy " - ey fove o e ey
PELM USTIRING PERFORMED AMD DINTANCE MATRIY £OME JTED MITH = o 1y
CL.'.J‘:\ VERES MIT TAKEM 4F [INGLE NOTEG,
aga e
LJ"\\" 'V
;.'-:.‘."' PARTET O MTASURE DEEE
LOOYDE MANT T RRINT O THYE TRERTD
o) ' .
aie B
el :
R L A I AVTY BN 1 W A
1 e 1 2 N) & 4
[S 3
LA,
e
Ry o R P N LT L ¥
PP pann T :
1’ A N A D oo j
}:ﬁ
3

e — e S R
AN EE Y v ey ;;;:—: = e = T
- 298 -
LT A TEr Bt 226 L0t G718 19020, 20022, 230410425
7

7 : < 2 o, = oy,

P AT LA AT T 1A, R TT TR A0 3L e P aRT7 44 4T p AR 49,0 EL BT 25,
ey orep
MAETER D9 IO G2 3T

THE FOLLOMINMG MOTES

s vae

g N K] q 7 2 iy Lo
) 12 L 14 17 14 L9 24y
R Q0 TR 04 7 NG 29 A
i 38 e AD 1, a9 43 44 4% 44
G- az ag Qe 5y EY g2 B% 0 854 57 58
ST) S Y | 42 44 $5
MO BEEN NENAMED AS FOLLONG?
, LA OND, MY
2. w5t ese o s arm o
] A
R 1
2 2
X X
L B!)
b =
an =
e &
Bk 7
(‘} ph Q
- 43 @ :
,]
en o |
“Epd L3
NN s
{FREQUUETERIMG DOMP_ TR Y
Lt . ;‘:
ARECLUGTERIME CERECEMED AMD NTSTANCE MATRIN COMRUTED MITH B o= V3
CLUSTR RS MOT TAK STNGLE O, .
e e
e
NERT PARTITION MEABURES 0, B0 ;
Dy 00 WANT T SRINT 1M ;
o
"4
0 :
||llf"
POUMTES LMD R BT
t ¢ t “ = X 3 & & g 2 C
"ll:. !’\.. 3
: ,
R i
. B
{ TR onre ‘
VR TR noane
want . =_} [98 Bl ” okt 3
;
}»4
-~
o
3

b 4

TE A A fps S vy soneEire T,

"

L2 PRI Y

IR

A TOLL

l! -

)
P! 1o
R R
" ey
N R,
-y ey
- KO
-

£
‘2 {a .
e (k)
o 33 L

NOTES |

My

N0

ey
" ! Y l-.l l\‘? ;' \:}

DMO NS

b ey

l«o

3
1

‘4\-

A

o
a4
—

]

AR
iR

£33 LR
LTI RN VRV

B L L T T TR

-
&

T
X

o %

rm

i

w

-.-,-.-.'. *

AR

[Tl W W

LSO DETERTNG PEEFORMED AMD
TAKEN A8

Qryer

-
LE ERS

[

haedd «

UMY

PUREEMY

ok

'.'"'f("! K

v s

SRR
H 2
[I I Pyl
a e TR
.y
.

A,

L £ .r we ‘.-‘ x,u .\"u\

MOT

LT

B
14
)

el

(1 ni I-‘l

Tt

S A0
SITNLY
(SIS LA

et
USTHRING
oo oI,

DEJELTS

we

.I"]'l

xJ

pe

‘.l
l') [
aneted
Ei¥
o)

)
LAY

&0

MAVE REEN RENMAKED
MEW NG

vox she

N
e sa0e -

5 INIE

Ty
FRRE R

A8

.y

=

T

26
34

as

wd

&l

A 7. 80 QA7 2 5R800 ¢

G A &L LN 10 E,

SN

27
41
CoHd

42

AL OME

-

g

o

ral e -

MR

o

\ l ..},.\Il

Y]
0

i T e

AT
FANRARS

r

Lol 2
ud s

f} o

COMFUTEI

oy
T

oy 3%

FLLE MaMES

ADLACENCY MATRIX REA

IR FR: N I O A R R LR R T,

e R TE 2 65/

:-'_- |_"'-) 3 Q. 1. \'.5:'-; » x}.:@ 7

“s o

BN TR AT 8
3
RS S i 1 SR 14 PR H

P

P I)

. Al A7 ARAD B0 EY A 5R Y

- s < . LK)
I

N LR RO L

v

4 |. > {‘“3 K .‘:":\; J KK u i\

x

¥
H

3T D 405 A5/
!
£y '

w.lu‘_ ’
Ll me
o

IR
LI)

(MO

e T e L L D D Ve

ORJESTS

I FROM |

shad/

[
SGed3

! (e 1 K 4 1t 1% 1T LA BA 44
IE) 3 2
iy (A 2 TS LU B
K . . g - 2
& L O S 1 VY S ¥
2 fOoEy A7 19 Al 4r 44
- 5 CHRY A L T} it 4 5:-)
* ae Wi AT [% s S amne
P ot 2okA 2 ST BRSO AL a2
[2 " vl -
- ’w.‘ 8 (. -‘.’7
o O T WA S Y - BT~ B 1oER
- . LY LY » LR . L 3 Pax masy
S Toae ET34 e 3 & “*
-3 ¢y <t e X o i <A =, EaE m
. N B P A [P e R e ad - wf ¥ RS »a
A4 &y it Y e [AC
e A £ *d > 3 [*

B e T e T RN TR YT T i

o
EE T AR~ YN i A ST S S " T TN
ARIE Y I G T e

ot . A2 ! T L

%
- 301 -
", ;
;S . 3:
3 _ 1
i CLINFS CLnTE 1oy 23 jE
o IR - v et - A P 31
F - Ao & :
1
s . E- L [o yose -
b LINRGS BETHENN CIUSRTERS 1od F ot

4 - 5 . S
1% ~ &9 :

L
'
4
i
H
d
3
3
£
£
3

e e R~ 0 N
L M CLUGTERS o2 4 3
MO ;
4
TN TR YRR I ahad ST e o ” o ’
LN CLURTERSR 1% 51 :
2 L) .
_ Ve & f
T . 0T :
L3 - 1
g " :
ES ...(- 2

't \:.;\':I.':

)
. LV AN o) v
. f' - !. :-?.' & 03
-\
(o s
. .
IR TR i N W10 o O Y IR TSt T o o9
SO RETMEER DLMETERS L% EI
FUOANT
IS .
AR S S R T R (IR TR v » " P ~
Wi A s
SRR S TWE 101 H
N
:
.
s AR 4 p . Ky
R R S K L :
LR e
i FO- - :
i
; WAl mERTETOTY, T gpmeeesamp T T
! T T A et [& - & B
; w o o g .
KA. w ¢
. T S T T I TE S =y - ;
A A v s . - S LI N - -
{ PR
S
, .
,
1
; :
i s v mvam e n s s s e . N o - e e e - . - . - - b G s s Fia e o ins s ~) N

BT LA e T il

2
T TN I > - > >
= 302 =
TR, YT o LI ,
Y A [. 4 Y7
LIRS LR TERE 4 U

D d?

IRIEE

LI
e

NDLIS TN
L LRI

(e
L

g
ML
ok
-
L

HETLETM

e b«

PETWE RN

A f';.““ ’..: Q\E

e ox

&
b

4

s

w¢ em @ 2

LAl

Y

12

£
Ll

i~

LR

o1y ”:t.!.’

b4 dve e mg

iede
.y

e

LET

21

&1

e Ve

13

[

)
LRI

Fa

o do

a1

SR

I R T
nLATERG
-

i

e

2

.

1) ..
s, r 0 -
T T, T il (Y] M ’
SRR T PR R [L 2%

&

*

¥y
-

2

1Y

(N

a sbe

¥

LS

pPropaEereT ey gt .
ke Al

LBe

2

S gy gy

o

o N

DR R

S —

Ty

, .\ ;
Ve a0 !
N 4 8
. N .
AP e A :
a3 " ‘Y;
i
I
N Y e AT T NI] = g ¢ i 1
Lot ZETRREM QL e &k & &
.
5 K7 :
s -5 ¥
&4
wer e :
R e i
T vl i
AV . ot
o 1.
.
BRI ECPAII N ey R o« '
- x a Y PLEETT IR A e e 5w an g . 0
W
g . 1 ‘
; Gk
R LA AR
"o & s
N TIELOITN] ON nPrres “ 4 1
R N !...\T PLPHRENR T O U 30 Bl e [Y [4
IR e 0T :
L v .
a
MK CEUTUNTESN LR "t - T
- -‘!‘ . T .-"--l.-i\! ra!.- - LW - e . i
-
- o
L .
R 3
. gt nay g g . s n e . .
e TR,) gt ¢ b
e L AT T T A 4
oy N “ ® :
. . :
P N B
. . 4
= . L . ?
5
LRI Ll B A A Y L) - e o M
ST LtATR LR 1
. ‘3
:
”
‘ :
; ;
: {
. 2
3
;
- N . > n . —— v - o o wbecm i

e Ny

et

[y

S e

S r/u,

T

PESE

i reateer

TR
M RO
e

R

R .fg\gr. o

‘.{L\-\lli

Y r AR
\l A

1 -\Ih* {"

R R

"
N7

[N
ISTRPY I
PP

[S R Ko
EETRCY

TTHEER

TRy e
I v y = Y]
il .

RETLEITIEN

Y

E T

TECTLIEINN

RETLH BN

RECWIELEN

g:!:. rhs ol g\l

i ‘:'T B

P LR ot) Ii"‘l“}\l
. wea

<y e gmees
RS TLS N
- a4

ie Wl ud

) L}

CLUET

Ein)

43
44

RSN

. bie by A

{

e

v

s

-

. "~
o

SLUETERG 4

o

MR

.(-.-

D e

(TRTAREh NS

Ny
A
Al

(-\
. e . e

l o :...

¥

N

(A3 o o] c\ fa
o

Liae 1L,

&

P
-

™ X /‘

- (53

e

ey

P K e

Ll Tt e o

W e ml x RTINS n

¥

"

. d

e

e o

L - B
oy sy
mara ¢ sk

D pr Ty «

o on " e -
ey e

Py

Y ::‘ X}

2

e

%

2

15

.
3

> Pyl
A L

sz

3>

2

@

s ax

~e

-

~e

.

e

Loy

i s d i v

e,

«
P R © Sy

> A

[PR

Q .
i

4 fer

cafhoa me e s

b3
Bt 4 La ks s sims vem v e e b e

2

g e

PR R Ty P ey

1 Tae

ek e e ur wm

Gy
"

IR

LAy

ANy
HRLEN B

. FLLE v
.. <

TN T
!

o

LRSS Y PR}

[N

:H‘:.-'; "

AL

AR

v X Fniean

HETHETY

i

P

PEYL

v-.. ,4.. .\. 1 :.- e "\I

e ’V'| i r.. P

: A8

xx

10 THIE s
ML R

ST
L

3

.
&y -

e ‘H"""t"

24~ AT

KE S ar

Dl IR iy T

I
e

e - 3¢
e - 8O

CLUSTE

DLTERG

Y ER
CLIIY SR
mo ;
R &

A

- 1]

(TR

m LSRR Rl Sl SN

R o= 24

7o~ EN
I Y
I ¥
W7 . [yt
anen d G R

"y l.n Tru!w-\

[T A I AR
o .-v1
s n .

.\l .“.\.‘.’-.p.‘,:
LY N
L3¢ B

3 °:
e

™ L.(.‘ \..-. e

e e Pl

B3

2

FS]

£

"

Lo

4y

)

AN

™ e

“s

1o

-

-2

il

e

g T oA~ v

i
2

P
ft
2 ¥
+ e
E

k'

v
R
T k>
‘

el

s

3
[
;7S

O N D A
N < K T

! 1'?;[;‘!:_: [T Ry I N T

e .0 7R

BVE |

PN £t

RN S

[- o e my
LOTReS i o &
Ll BN Drleva L 8 3
"
30~ 39
v) 4 ™ o .
LMK 18 2%
5t
PO
o)

A

QETYWEEN CLNSTERS

e e

- 3

3

werned B

Dh - X7
[X e) -y ey
AT I 40

T
Hath

Y UE.}’!'SZ'):) T8y

LAY e e TR wod %
3L o~ an
WX e A
Fa -

"

Tt

o

B e R R Ay

csgiap

s
ks

APPENDIX J

!

i
1
r\i‘

i 7

Main Subproblems. Resulting From The
Second. Iteration of the Decomposition Analysis

M

.
o an e e Bttt AR P FoseY ok Kb) P

Note: (11) The number in the parenthesis indicates

the number of interdependencies identified §
for the requirement.

Ll

oy

Rkis

- 307 =

Main Subproblem, 1: Supervisor Process:

7 (10):
9 (8):
10 (8):

17 (5):
19 (9):

21 (5):
22 (3):
62 (2):

70 (9):

The operating system must provide for a multi-
programming environment..

All resource requesSts must pass through the
supervisor.

System resources must be allocated to a job prior
to it being runnable.

System process routines are re-entrant and shared.
Supervisor process must schedule jobs and prepare
them for execution.

Jobs are initiated -strictly on a first-come, first-
served basis.

Supervisor process must be modularized so that
improvements are easy.

Supervisor process must load the user-supplied
object deck into memory.

There is ohe supervisor process per job stream.

Main Subproblem 2: Extendéd Machine Instruction Mechanism:

8 (3):

12 (8):

16 (5):
18 (4):

Operating system must run on a machine that has
two states.

User communication with operating system is via
special call.

Certain system routines are user callable.
Extended machine instructions are executed in the

supervisor state.

Main Subproblem 3: Process Control Functions:

T

o AR R R
- P NN o

e

S YA 35 bl A Ch e e T Oy T i ————
L

- 308 -

SUBPROBLEM M§ 5~A - Process. Scheduling:

11 (6): A process must be ready t¢ run prior to being
allocated a processor.

24 (7): Ready processes .are scheduled in round-robin
fashion by process scheduler.

26 (6): A process shall be blocked when awaiting synchron-
ization..

59 (6): If no messages are available to a process explicitly
then it goes blocked.

71 (3): I/0 interrupt handler must provide for a synchronous
scheduling of a process requiring fast processing.

SUBPROBLEM MS 3-B =~ System Initiated Interrupts:

23 (3): Process scheduler must time-slice CPU usage.

25 (9): A process shall be blocked when its time gquantum
is exceeded.

47 (. 7): Interrupt handler must be provided for I/0
interrupts.

49 (6): Interrupt handler'must be provided for supervisor
call interrupts.

50 (5): Interrupt handler must be provideq for external
interrupts.

SUBPROBLEM MS 3-C - User Process Inittiated Interrupts:

27 (4): A process shall be blecked when it specifically
relinquishes control.

28 (10): Supervisor routine must reclaim all system resources

when a job is completed.

poitnci

'\ﬂ..‘vha)

]

3

- .S D
i G AR e T

G e

e oot v e

e

e

29

48

68

‘Main

13

20

30.

63

64

66

67

- 309 -

Supervisor must reé¢laim resources when an error
condition is raised:

Interrupt handler must be provid, { for program
interrupts.

‘User process must signal completion to the opera-

ting system.

Subproblem: 4: Process Creation Functions:

Operating 'system must. protect user jobs from each
other.

Initially one process is created for each user's
job. ,
Reference to a process is by symbolic name.

All processes may dynamically create additional
processes.

Dynamically created processes run on the same
memory area as parent job. ‘

User processes can destroy other user processes

only within the same group.

User processes run in the problem state.

Main Subproblem 5: Interprocess Communication:

MS 5-a

14

33

- Operating System Information Tables:
Operating system must utilize information tables
to monitor and control.
System tables can be dynamically allocated and
released.

Operating system may dynamically allocate memory

SR

1o

Vrsadon s Lok’ A

e R,

Ry N

kb D A AN s e M ARG 2300, i A S 55 S5 e LA S A N R MMIEIN S Rl I e oaci B3 i IS 5

- 310 -
£o itself for workspace.

MS' 5-B - Message Facility

52 (10): Message facility must be provided to all processes:

53 (5): Processes réceiving mescages must be .able to
determine the. originator..

54 (6): Receiving process may read the name and text from
originator.

55 (2): Messages are of an arbitrary yet specified length.

56 (7): Any number of messages may be queued.

57 (4): All messages are released when a process ‘terminates.

58 (4): Messages are not receipted for.

Main Subproblem 6: Memory Allocation Functions:

31 (8): The-operating system must allocate memory for a job.

32 (8): Memory is allocated to a job in contiguous 2K
blocks..

34 (4): Memory is allocated using a best-fit algorithm.

35 (7): Memory must be protected to prevent simultaneous
allocation.

36 (7): Free storage areas are collapsed into blocks when 1

a job is freed.

65 (5): User processes cannot dynamically allocate memory.

Main Subproblem 7: Device Management Functions:

37 (13): Operating system must supply a device management

system. i ,d
38 (5): Device handler routines must support multiple job %
streams. i

e
;

LR) ez v
‘ O

‘/E;Z}f""‘;”',‘

P AR e n e x v e

< (10):

(. 6):

(8):

- {(12) s

6l (6):

69 (7):

Main Subproblem 8: Process Synchronization Functions:

43 (10):

44 (7):

45 (5):

46 (10):

51 (6):

5 G o AT e A ol S TSl
yokiikiig X Kk ol

[I A e g T e
(29 R CERE

TrahE - B Forar =

- 311 =

A device: i$ dedicated to a job.

The device handler routine supports one card
reader per input stream.

The device handler routine must support one lineé
printer.

The user .can provide his own routines for non-
atandard davices.

User programs use JCL to specify resource
requirements.

Operating system must accept input data from user's
job stream.

User's 'job can reference at most 1 input, 1 output,

and 1 non-standard device.

A process synchronization mechanism must be
provided as a lock database.

A process synchronization mechanism must be pro-
vided for synchronous process.

A process synchronization mechanism must be pro-
vided for sender and receiver of messages.

A process synchronization mechanism must be
provided to lock a device.

P-V operations are available oriy to system

processes.

SIS Sl

e Yy mal S

- 31_2' -

APPENDIX K

Linkage - Interface Assessment

B et

i o 3 e e s UL s

e

“

- 313 -

LINKAGE - INTERFACE ASSESSMENT

Cluster

Subproblem ‘Number
Process Scheduling 3
System Initiated:

:n;errﬁpt Handler) 4
User Initiated Interrupt

Handler 5
Process. Sychronization

Mechanism 11
Memory Allocatioh 9
Operating System

Information Tables 7
Process Creation 6
Message Facility 8
Device Management 10

Functions
Supervisor Process 1
Extended Machine 2

Instruction Mechanism

Module

Process Management
(Lower) Module

Memory Management
Module

Process Management
(upper) Module

Device Management
Module

Supervisor Process
Module

Supervisor Call
Handler

(}‘ 3

i
i |
A

R, s
S o 2N e RIS

AN S5 ARSI it i

o st

—— T PRl = < CaEY - T = . ~ v v iy — g &3

NUMBER OF LINKAGES BETWEEN SUBPROBLEMS

. 3 4 5 11 9 17 6 8 10 1 2

. 3 | o 32 3 - 2 6 3 - 2 -

4 |3 0 3 - - - - - 3 - 3

5 | 2 3 0 2 2 = - 1 1 5 2

11 | 3 - 2 o 3 - 1 4 1 2

: - - - 2 3 0 - - - - :
2 5 3 - 2 -
3

® O N W
qX)
f
'

- 314 =~
w o

}

|

{

N s
|
N
N
'
o
S
-

N
B
5
N
| W, B oW
- N kY A
A W 2N
\ b4 Ty
¢ .m
I e s ?ﬁ
s vy ~ TN gy st < s - m 5 PR - N -
- P Y S
il «\“‘ - S L. . ; > A
L s it 1 A o s eI e .
P S RESaeSS e o L E.’&%\\.u.F_,..xarx,,unfwtw&m.,ur,nh{,,,

